aboutsummaryrefslogtreecommitdiff
path: root/raylib/rmodels.c
diff options
context:
space:
mode:
authorUneven Prankster <unevenprankster@protonmail.com>2023-10-15 21:28:29 -0300
committerUneven Prankster <unevenprankster@protonmail.com>2023-10-15 21:28:29 -0300
commit1c0cc775732201f4c4d3ee0d6772be786b3b4aa1 (patch)
treef5d692d046868261275c7430a624c3ea9ed75d3d /raylib/rmodels.c
parenta89f892640cf12f75c7ce18e6e88c70a8d3965ed (diff)
A lot has certainly happened!
Diffstat (limited to 'raylib/rmodels.c')
-rw-r--r--raylib/rmodels.c5979
1 files changed, 0 insertions, 5979 deletions
diff --git a/raylib/rmodels.c b/raylib/rmodels.c
deleted file mode 100644
index 8c7e088..0000000
--- a/raylib/rmodels.c
+++ /dev/null
@@ -1,5979 +0,0 @@
-/**********************************************************************************************
-*
-* rmodels - Basic functions to draw 3d shapes and load and draw 3d models
-*
-* CONFIGURATION:
-* #define SUPPORT_MODULE_RMODELS
-* rmodels module is included in the build
-*
-* #define SUPPORT_FILEFORMAT_OBJ
-* #define SUPPORT_FILEFORMAT_MTL
-* #define SUPPORT_FILEFORMAT_IQM
-* #define SUPPORT_FILEFORMAT_GLTF
-* #define SUPPORT_FILEFORMAT_VOX
-* #define SUPPORT_FILEFORMAT_M3D
-* Selected desired fileformats to be supported for model data loading.
-*
-* #define SUPPORT_MESH_GENERATION
-* Support procedural mesh generation functions, uses external par_shapes.h library
-* NOTE: Some generated meshes DO NOT include generated texture coordinates
-*
-*
-* LICENSE: zlib/libpng
-*
-* Copyright (c) 2013-2023 Ramon Santamaria (@raysan5)
-*
-* This software is provided "as-is", without any express or implied warranty. In no event
-* will the authors be held liable for any damages arising from the use of this software.
-*
-* Permission is granted to anyone to use this software for any purpose, including commercial
-* applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-* 1. The origin of this software must not be misrepresented; you must not claim that you
-* wrote the original software. If you use this software in a product, an acknowledgment
-* in the product documentation would be appreciated but is not required.
-*
-* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
-* as being the original software.
-*
-* 3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#include "raylib.h" // Declares module functions
-
-// Check if config flags have been externally provided on compilation line
-#if !defined(EXTERNAL_CONFIG_FLAGS)
- #include "config.h" // Defines module configuration flags
-#endif
-
-#if defined(SUPPORT_MODULE_RMODELS)
-
-#include "utils.h" // Required for: TRACELOG(), LoadFileData(), LoadFileText(), SaveFileText()
-#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
-#include "raymath.h" // Required for: Vector3, Quaternion and Matrix functionality
-
-#include <stdio.h> // Required for: sprintf()
-#include <stdlib.h> // Required for: malloc(), free()
-#include <string.h> // Required for: memcmp(), strlen()
-#include <math.h> // Required for: sinf(), cosf(), sqrtf(), fabsf()
-
-#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
- #define TINYOBJ_MALLOC RL_MALLOC
- #define TINYOBJ_CALLOC RL_CALLOC
- #define TINYOBJ_REALLOC RL_REALLOC
- #define TINYOBJ_FREE RL_FREE
-
- #define TINYOBJ_LOADER_C_IMPLEMENTATION
- #include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_GLTF)
- #define CGLTF_MALLOC RL_MALLOC
- #define CGLTF_FREE RL_FREE
-
- #define CGLTF_IMPLEMENTATION
- #include "external/cgltf.h" // glTF file format loading
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_VOX)
- #define VOX_MALLOC RL_MALLOC
- #define VOX_CALLOC RL_CALLOC
- #define VOX_REALLOC RL_REALLOC
- #define VOX_FREE RL_FREE
-
- #define VOX_LOADER_IMPLEMENTATION
- #include "external/vox_loader.h" // VOX file format loading (MagikaVoxel)
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_M3D)
- #define M3D_MALLOC RL_MALLOC
- #define M3D_REALLOC RL_REALLOC
- #define M3D_FREE RL_FREE
-
- #define M3D_IMPLEMENTATION
- #include "external/m3d.h" // Model3D file format loading
-#endif
-
-#if defined(SUPPORT_MESH_GENERATION)
- #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T)))
- #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1))
- #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N)))
- #define PAR_FREE RL_FREE
-
-#if defined(_MSC_VER ) // par shapes has 2 warnings on windows, so disable them just fof this file
-#pragma warning( push )
-#pragma warning( disable : 4244)
-#pragma warning( disable : 4305)
-#endif
-
- #define PAR_SHAPES_IMPLEMENTATION
- #include "external/par_shapes.h" // Shapes 3d parametric generation
-
-#if defined(_MSC_VER ) // disable MSVC warning suppression for par shapes
-#pragma warning( pop )
-#endif
-
-#endif
-
-#if defined(_WIN32)
- #include <direct.h> // Required for: _chdir() [Used in LoadOBJ()]
- #define CHDIR _chdir
-#else
- #include <unistd.h> // Required for: chdir() (POSIX) [Used in LoadOBJ()]
- #define CHDIR chdir
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#ifndef MAX_MATERIAL_MAPS
- #define MAX_MATERIAL_MAPS 12 // Maximum number of maps supported
-#endif
-#ifndef MAX_MESH_VERTEX_BUFFERS
- #define MAX_MESH_VERTEX_BUFFERS 7 // Maximum vertex buffers (VBO) per mesh
-#endif
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Global Variables Definition
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Declaration
-//----------------------------------------------------------------------------------
-#if defined(SUPPORT_FILEFORMAT_OBJ)
-static Model LoadOBJ(const char *fileName); // Load OBJ mesh data
-#endif
-#if defined(SUPPORT_FILEFORMAT_IQM)
-static Model LoadIQM(const char *fileName); // Load IQM mesh data
-static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, unsigned int *animCount); // Load IQM animation data
-#endif
-#if defined(SUPPORT_FILEFORMAT_GLTF)
-static Model LoadGLTF(const char *fileName); // Load GLTF mesh data
-static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, unsigned int *animCount); // Load GLTF animation data
-#endif
-#if defined(SUPPORT_FILEFORMAT_VOX)
-static Model LoadVOX(const char *filename); // Load VOX mesh data
-#endif
-#if defined(SUPPORT_FILEFORMAT_M3D)
-static Model LoadM3D(const char *filename); // Load M3D mesh data
-static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, unsigned int *animCount); // Load M3D animation data
-#endif
-#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
-static void ProcessMaterialsOBJ(Material *rayMaterials, tinyobj_material_t *materials, int materialCount); // Process obj materials
-#endif
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition
-//----------------------------------------------------------------------------------
-
-// Draw a line in 3D world space
-void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
-{
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlVertex3f(startPos.x, startPos.y, startPos.z);
- rlVertex3f(endPos.x, endPos.y, endPos.z);
- rlEnd();
-}
-
-// Draw a point in 3D space, actually a small line
-void DrawPoint3D(Vector3 position, Color color)
-{
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlVertex3f(0.0f, 0.0f, 0.0f);
- rlVertex3f(0.0f, 0.0f, 0.1f);
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a circle in 3D world space
-void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
-{
- rlPushMatrix();
- rlTranslatef(center.x, center.y, center.z);
- rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
-
- rlBegin(RL_LINES);
- for (int i = 0; i < 360; i += 10)
- {
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
- rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a color-filled triangle (vertex in counter-clockwise order!)
-void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color)
-{
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlVertex3f(v1.x, v1.y, v1.z);
- rlVertex3f(v2.x, v2.y, v2.z);
- rlVertex3f(v3.x, v3.y, v3.z);
- rlEnd();
-}
-
-// Draw a triangle strip defined by points
-void DrawTriangleStrip3D(Vector3 *points, int pointCount, Color color)
-{
- if (pointCount < 3) return;
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 2; i < pointCount; i++)
- {
- if ((i%2) == 0)
- {
- rlVertex3f(points[i].x, points[i].y, points[i].z);
- rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
- rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
- }
- else
- {
- rlVertex3f(points[i].x, points[i].y, points[i].z);
- rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
- rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
- }
- }
- rlEnd();
-}
-
-// Draw cube
-// NOTE: Cube position is the center position
-void DrawCube(Vector3 position, float width, float height, float length, Color color)
-{
- float x = 0.0f;
- float y = 0.0f;
- float z = 0.0f;
-
- rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
- rlTranslatef(position.x, position.y, position.z);
- //rlRotatef(45, 0, 1, 0);
- //rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- // Front face
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
-
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
-
- // Back face
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
-
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
-
- // Top face
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
-
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
-
- // Bottom face
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
-
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
-
- // Right face
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
-
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
-
- // Left face
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right
-
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw cube (Vector version)
-void DrawCubeV(Vector3 position, Vector3 size, Color color)
-{
- DrawCube(position, size.x, size.y, size.z, color);
-}
-
-// Draw cube wires
-void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
-{
- float x = 0.0f;
- float y = 0.0f;
- float z = 0.0f;
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- // Front face
- //------------------------------------------------------------------
- // Bottom line
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right
-
- // Left line
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right
-
- // Top line
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left
-
- // Right line
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left
-
- // Back face
- //------------------------------------------------------------------
- // Bottom line
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right
-
- // Left line
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right
-
- // Top line
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left
-
- // Right line
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left
-
- // Top face
- //------------------------------------------------------------------
- // Left line
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left front
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left back
-
- // Right line
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right front
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right back
-
- // Bottom face
- //------------------------------------------------------------------
- // Left line
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Top left front
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Top left back
-
- // Right line
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Top right front
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Top right back
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw cube wires (vector version)
-void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
-{
- DrawCubeWires(position, size.x, size.y, size.z, color);
-}
-
-// Draw sphere
-void DrawSphere(Vector3 centerPos, float radius, Color color)
-{
- DrawSphereEx(centerPos, radius, 16, 16, color);
-}
-
-// Draw sphere with extended parameters
-void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
-{
- rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> translate)
- rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
- rlScalef(radius, radius, radius);
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < (rings + 2); i++)
- {
- for (int j = 0; j < slices; j++)
- {
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
-
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
- }
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw sphere wires
-void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
-{
- rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> translate)
- rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
- rlScalef(radius, radius, radius);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < (rings + 2); i++)
- {
- for (int j = 0; j < slices; j++)
- {
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
-
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
-
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
- rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
- sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
- cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
- }
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a cylinder
-// NOTE: It could be also used for pyramid and cone
-void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
-{
- if (sides < 3) sides = 3;
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- if (radiusTop > 0)
- {
- // Draw Body -------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom); //Bottom Right
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); //Top Right
-
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop); //Top Right
- }
-
- // Draw Cap --------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(0, height, 0);
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop);
- }
- }
- else
- {
- // Draw Cone -------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(0, height, 0);
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom);
- }
- }
-
- // Draw Base -----------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(0, 0, 0);
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a cylinder with base at startPos and top at endPos
-// NOTE: It could be also used for pyramid and cone
-void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color)
-{
- if (sides < 3) sides = 3;
-
- Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
- if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return;
-
- // Construct a basis of the base and the top face:
- Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
- Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
-
- float baseAngle = (2.0f*PI)/sides;
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < sides; i++) {
- // compute the four vertices
- float s1 = sinf(baseAngle*(i + 0))*startRadius;
- float c1 = cosf(baseAngle*(i + 0))*startRadius;
- Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z };
- float s2 = sinf(baseAngle*(i + 1))*startRadius;
- float c2 = cosf(baseAngle*(i + 1))*startRadius;
- Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z };
- float s3 = sinf(baseAngle*(i + 0))*endRadius;
- float c3 = cosf(baseAngle*(i + 0))*endRadius;
- Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z };
- float s4 = sinf(baseAngle*(i + 1))*endRadius;
- float c4 = cosf(baseAngle*(i + 1))*endRadius;
- Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z };
-
- if (startRadius > 0) { //
- rlVertex3f(startPos.x, startPos.y, startPos.z); // |
- rlVertex3f(w2.x, w2.y, w2.z); // T0
- rlVertex3f(w1.x, w1.y, w1.z); // |
- } //
- // w2 x.-----------x startPos
- rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 /
- rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. /
- rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. /
- // | 2 \ T 'x w1
- rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos
- rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/
- rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | /
- // '.\|/
- if (endRadius > 0) { // 'x w3
- rlVertex3f(endPos.x, endPos.y, endPos.z); // |
- rlVertex3f(w3.x, w3.y, w3.z); // T3
- rlVertex3f(w4.x, w4.y, w4.z); // |
- } //
- }
- rlEnd();
-}
-
-// Draw a wired cylinder
-// NOTE: It could be also used for pyramid and cone
-void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
-{
- if (sides < 3) sides = 3;
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom);
-
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360.0f/sides))*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop);
-
- rlVertex3f(sinf(DEG2RAD*(i + 360.0f/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360.0f/sides))*radiusTop);
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
-
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- }
- rlEnd();
- rlPopMatrix();
-}
-
-
-// Draw a wired cylinder with base at startPos and top at endPos
-// NOTE: It could be also used for pyramid and cone
-void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color)
-{
- if (sides < 3) sides = 3;
-
- Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
- if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0))return;
-
- // Construct a basis of the base and the top face:
- Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
- Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
-
- float baseAngle = (2.0f*PI)/sides;
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < sides; i++) {
- // compute the four vertices
- float s1 = sinf(baseAngle*(i + 0))*startRadius;
- float c1 = cosf(baseAngle*(i + 0))*startRadius;
- Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z };
- float s2 = sinf(baseAngle*(i + 1))*startRadius;
- float c2 = cosf(baseAngle*(i + 1))*startRadius;
- Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z };
- float s3 = sinf(baseAngle*(i + 0))*endRadius;
- float c3 = cosf(baseAngle*(i + 0))*endRadius;
- Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z };
- float s4 = sinf(baseAngle*(i + 1))*endRadius;
- float c4 = cosf(baseAngle*(i + 1))*endRadius;
- Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z };
-
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w2.x, w2.y, w2.z);
-
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w3.x, w3.y, w3.z);
-
- rlVertex3f(w3.x, w3.y, w3.z);
- rlVertex3f(w4.x, w4.y, w4.z);
- }
- rlEnd();
-}
-
-// Draw a capsule with the center of its sphere caps at startPos and endPos
-void DrawCapsule(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color)
-{
- if (slices < 3) slices = 3;
-
- Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
-
- // draw a sphere if start and end points are the same
- bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0);
- if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f};
-
- // Construct a basis of the base and the caps:
- Vector3 b0 = Vector3Normalize(direction);
- Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
- Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
- Vector3 capCenter = endPos;
-
- float baseSliceAngle = (2.0f*PI)/slices;
- float baseRingAngle = PI * 0.5f / rings;
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- // render both caps
- for (int c = 0; c < 2; c++)
- {
- for (int i = 0; i < rings; i++)
- {
- for (int j = 0; j < slices; j++)
- {
-
- // we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier
-
- // as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i))
- // as we iterate through the rings they must get smaller by the cos(angle(i))
-
- // compute the four vertices
- float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 0 ));
- float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 0 ));
- Vector3 w1 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z) * radius
- };
- float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 0 ));
- float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 0 ));
- Vector3 w2 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z) * radius
- };
-
- float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 1 ));
- float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 1 ));
- Vector3 w3 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z) * radius
- };
- float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 1 ));
- float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 1 ));
- Vector3 w4 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z) * radius
- };
-
- // make sure cap triangle normals are facing outwards
- if(c == 0)
- {
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w3.x, w3.y, w3.z);
-
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w4.x, w4.y, w4.z);
- rlVertex3f(w3.x, w3.y, w3.z);
- }
- else
- {
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w3.x, w3.y, w3.z);
- rlVertex3f(w2.x, w2.y, w2.z);
-
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w3.x, w3.y, w3.z);
- rlVertex3f(w4.x, w4.y, w4.z);
- }
- }
- }
- capCenter = startPos;
- b0 = Vector3Scale(b0, -1.0f);
- }
- // render middle
- if (!sphereCase)
- {
- for (int j = 0; j < slices; j++)
- {
- // compute the four vertices
- float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius;
- float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius;
- Vector3 w1 = {
- startPos.x + ringSin1*b1.x + ringCos1*b2.x,
- startPos.y + ringSin1*b1.y + ringCos1*b2.y,
- startPos.z + ringSin1*b1.z + ringCos1*b2.z
- };
- float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius;
- float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius;
- Vector3 w2 = {
- startPos.x + ringSin2*b1.x + ringCos2*b2.x,
- startPos.y + ringSin2*b1.y + ringCos2*b2.y,
- startPos.z + ringSin2*b1.z + ringCos2*b2.z
- };
-
- float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius;
- float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius;
- Vector3 w3 = {
- endPos.x + ringSin3*b1.x + ringCos3*b2.x,
- endPos.y + ringSin3*b1.y + ringCos3*b2.y,
- endPos.z + ringSin3*b1.z + ringCos3*b2.z
- };
- float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius;
- float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius;
- Vector3 w4 = {
- endPos.x + ringSin4*b1.x + ringCos4*b2.x,
- endPos.y + ringSin4*b1.y + ringCos4*b2.y,
- endPos.z + ringSin4*b1.z + ringCos4*b2.z
- };
- // w2 x.-----------x startPos
- rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 /
- rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. /
- rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. /
- // | 2 \ T 'x w1
- rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos
- rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/
- rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | /
- // '.\|/
- // 'x w3
- }
- }
- rlEnd();
-}
-
-// Draw capsule wires with the center of its sphere caps at startPos and endPos
-void DrawCapsuleWires(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color)
-{
- if (slices < 3) slices = 3;
-
- Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
-
- // draw a sphere if start and end points are the same
- bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0);
- if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f};
-
- // Construct a basis of the base and the caps:
- Vector3 b0 = Vector3Normalize(direction);
- Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
- Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
- Vector3 capCenter = endPos;
-
- float baseSliceAngle = (2.0f*PI)/slices;
- float baseRingAngle = PI * 0.5f / rings;
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- // render both caps
- for (int c = 0; c < 2; c++)
- {
- for (int i = 0; i < rings; i++)
- {
- for (int j = 0; j < slices; j++)
- {
-
- // we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier
-
- // as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i))
- // as we iterate through the rings they must get smaller by the cos(angle(i))
-
- // compute the four vertices
- float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 0 ));
- float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 0 ));
- Vector3 w1 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z) * radius
- };
- float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 0 ));
- float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 0 ));
- Vector3 w2 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z) * radius
- };
-
- float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 1 ));
- float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle * ( i + 1 ));
- Vector3 w3 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z) * radius
- };
- float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 1 ));
- float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle * ( i + 1 ));
- Vector3 w4 = (Vector3){
- capCenter.x + (sinf(baseRingAngle * ( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x) * radius,
- capCenter.y + (sinf(baseRingAngle * ( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y) * radius,
- capCenter.z + (sinf(baseRingAngle * ( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z) * radius
- };
-
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w2.x, w2.y, w2.z);
-
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w3.x, w3.y, w3.z);
-
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w3.x, w3.y, w3.z);
-
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w4.x, w4.y, w4.z);
-
- rlVertex3f(w3.x, w3.y, w3.z);
- rlVertex3f(w4.x, w4.y, w4.z);
- }
- }
- capCenter = startPos;
- b0 = Vector3Scale(b0, -1.0f);
- }
- // render middle
- if (!sphereCase)
- {
- for (int j = 0; j < slices; j++)
- {
- // compute the four vertices
- float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius;
- float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius;
- Vector3 w1 = {
- startPos.x + ringSin1*b1.x + ringCos1*b2.x,
- startPos.y + ringSin1*b1.y + ringCos1*b2.y,
- startPos.z + ringSin1*b1.z + ringCos1*b2.z
- };
- float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius;
- float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius;
- Vector3 w2 = {
- startPos.x + ringSin2*b1.x + ringCos2*b2.x,
- startPos.y + ringSin2*b1.y + ringCos2*b2.y,
- startPos.z + ringSin2*b1.z + ringCos2*b2.z
- };
-
- float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius;
- float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius;
- Vector3 w3 = {
- endPos.x + ringSin3*b1.x + ringCos3*b2.x,
- endPos.y + ringSin3*b1.y + ringCos3*b2.y,
- endPos.z + ringSin3*b1.z + ringCos3*b2.z
- };
- float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius;
- float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius;
- Vector3 w4 = {
- endPos.x + ringSin4*b1.x + ringCos4*b2.x,
- endPos.y + ringSin4*b1.y + ringCos4*b2.y,
- endPos.z + ringSin4*b1.z + ringCos4*b2.z
- };
-
- rlVertex3f(w1.x, w1.y, w1.z);
- rlVertex3f(w3.x, w3.y, w3.z);
-
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w4.x, w4.y, w4.z);
-
- rlVertex3f(w2.x, w2.y, w2.z);
- rlVertex3f(w3.x, w3.y, w3.z);
- }
- }
- rlEnd();
-}
-
-// Draw a plane
-void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
-{
- // NOTE: Plane is always created on XZ ground
- rlPushMatrix();
- rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
- rlScalef(size.x, 1.0f, size.y);
-
- rlBegin(RL_QUADS);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlNormal3f(0.0f, 1.0f, 0.0f);
-
- rlVertex3f(-0.5f, 0.0f, -0.5f);
- rlVertex3f(-0.5f, 0.0f, 0.5f);
- rlVertex3f(0.5f, 0.0f, 0.5f);
- rlVertex3f(0.5f, 0.0f, -0.5f);
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a ray line
-void DrawRay(Ray ray, Color color)
-{
- float scale = 10000;
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
- rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
- rlEnd();
-}
-
-// Draw a grid centered at (0, 0, 0)
-void DrawGrid(int slices, float spacing)
-{
- int halfSlices = slices/2;
-
- rlBegin(RL_LINES);
- for (int i = -halfSlices; i <= halfSlices; i++)
- {
- if (i == 0)
- {
- rlColor3f(0.5f, 0.5f, 0.5f);
- rlColor3f(0.5f, 0.5f, 0.5f);
- rlColor3f(0.5f, 0.5f, 0.5f);
- rlColor3f(0.5f, 0.5f, 0.5f);
- }
- else
- {
- rlColor3f(0.75f, 0.75f, 0.75f);
- rlColor3f(0.75f, 0.75f, 0.75f);
- rlColor3f(0.75f, 0.75f, 0.75f);
- rlColor3f(0.75f, 0.75f, 0.75f);
- }
-
- rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
- rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
-
- rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
- rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
- }
- rlEnd();
-}
-
-// Load model from files (mesh and material)
-Model LoadModel(const char *fileName)
-{
- Model model = { 0 };
-
-#if defined(SUPPORT_FILEFORMAT_OBJ)
- if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
-#endif
-#if defined(SUPPORT_FILEFORMAT_IQM)
- if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
-#endif
-#if defined(SUPPORT_FILEFORMAT_GLTF)
- if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName);
-#endif
-#if defined(SUPPORT_FILEFORMAT_VOX)
- if (IsFileExtension(fileName, ".vox")) model = LoadVOX(fileName);
-#endif
-#if defined(SUPPORT_FILEFORMAT_M3D)
- if (IsFileExtension(fileName, ".m3d")) model = LoadM3D(fileName);
-#endif
-
- // Make sure model transform is set to identity matrix!
- model.transform = MatrixIdentity();
-
- if (model.meshCount == 0)
- {
- model.meshCount = 1;
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
-#if defined(SUPPORT_MESH_GENERATION)
- TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data, default to cube mesh", fileName);
- model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f);
-#else
- TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data", fileName);
-#endif
- }
- else
- {
- // Upload vertex data to GPU (static mesh)
- for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false);
- }
-
- if (model.materialCount == 0)
- {
- TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load material data, default to white material", fileName);
-
- model.materialCount = 1;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.materials[0] = LoadMaterialDefault();
-
- if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
- }
-
- return model;
-}
-
-// Load model from generated mesh
-// WARNING: A shallow copy of mesh is generated, passed by value,
-// as long as struct contains pointers to data and some values, we get a copy
-// of mesh pointing to same data as original version... be careful!
-Model LoadModelFromMesh(Mesh mesh)
-{
- Model model = { 0 };
-
- model.transform = MatrixIdentity();
-
- model.meshCount = 1;
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
- model.meshes[0] = mesh;
-
- model.materialCount = 1;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.materials[0] = LoadMaterialDefault();
-
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
- model.meshMaterial[0] = 0; // First material index
-
- return model;
-}
-
-// Check if a model is ready
-bool IsModelReady(Model model)
-{
- return ((model.meshes != NULL) && // Validate model contains some mesh
- (model.materials != NULL) && // Validate model contains some material (at least default one)
- (model.meshMaterial != NULL) && // Validate mesh-material linkage
- (model.meshCount > 0) && // Validate mesh count
- (model.materialCount > 0)); // Validate material count
-
- // NOTE: This is a very general model validation, many elements could be validated from a model...
-}
-
-// Unload model (meshes/materials) from memory (RAM and/or VRAM)
-// NOTE: This function takes care of all model elements, for a detailed control
-// over them, use UnloadMesh() and UnloadMaterial()
-void UnloadModel(Model model)
-{
- // Unload meshes
- for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
-
- // Unload materials maps
- // NOTE: As the user could be sharing shaders and textures between models,
- // we don't unload the material but just free its maps,
- // the user is responsible for freeing models shaders and textures
- for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
-
- // Unload arrays
- RL_FREE(model.meshes);
- RL_FREE(model.materials);
- RL_FREE(model.meshMaterial);
-
- // Unload animation data
- RL_FREE(model.bones);
- RL_FREE(model.bindPose);
-
- TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM");
-}
-
-// Compute model bounding box limits (considers all meshes)
-BoundingBox GetModelBoundingBox(Model model)
-{
- BoundingBox bounds = { 0 };
-
- if (model.meshCount > 0)
- {
- Vector3 temp = { 0 };
- bounds = GetMeshBoundingBox(model.meshes[0]);
-
- for (int i = 1; i < model.meshCount; i++)
- {
- BoundingBox tempBounds = GetMeshBoundingBox(model.meshes[i]);
-
- temp.x = (bounds.min.x < tempBounds.min.x)? bounds.min.x : tempBounds.min.x;
- temp.y = (bounds.min.y < tempBounds.min.y)? bounds.min.y : tempBounds.min.y;
- temp.z = (bounds.min.z < tempBounds.min.z)? bounds.min.z : tempBounds.min.z;
- bounds.min = temp;
-
- temp.x = (bounds.max.x > tempBounds.max.x)? bounds.max.x : tempBounds.max.x;
- temp.y = (bounds.max.y > tempBounds.max.y)? bounds.max.y : tempBounds.max.y;
- temp.z = (bounds.max.z > tempBounds.max.z)? bounds.max.z : tempBounds.max.z;
- bounds.max = temp;
- }
- }
-
- return bounds;
-}
-
-// Upload vertex data into a VAO (if supported) and VBO
-void UploadMesh(Mesh *mesh, bool dynamic)
-{
- if (mesh->vaoId > 0)
- {
- // Check if mesh has already been loaded in GPU
- TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId);
- return;
- }
-
- mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int));
-
- mesh->vaoId = 0; // Vertex Array Object
- mesh->vboId[0] = 0; // Vertex buffer: positions
- mesh->vboId[1] = 0; // Vertex buffer: texcoords
- mesh->vboId[2] = 0; // Vertex buffer: normals
- mesh->vboId[3] = 0; // Vertex buffer: colors
- mesh->vboId[4] = 0; // Vertex buffer: tangents
- mesh->vboId[5] = 0; // Vertex buffer: texcoords2
- mesh->vboId[6] = 0; // Vertex buffer: indices
-
-#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
- mesh->vaoId = rlLoadVertexArray();
- rlEnableVertexArray(mesh->vaoId);
-
- // NOTE: Vertex attributes must be uploaded considering default locations points and available vertex data
-
- // Enable vertex attributes: position (shader-location = 0)
- void *vertices = mesh->animVertices != NULL ? mesh->animVertices : mesh->vertices;
- mesh->vboId[0] = rlLoadVertexBuffer(vertices, mesh->vertexCount*3*sizeof(float), dynamic);
- rlSetVertexAttribute(0, 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(0);
-
- // Enable vertex attributes: texcoords (shader-location = 1)
- mesh->vboId[1] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic);
- rlSetVertexAttribute(1, 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(1);
-
- // WARNING: When setting default vertex attribute values, the values for each generic vertex attribute
- // is part of current state, and it is maintained even if a different program object is used
-
- if (mesh->normals != NULL)
- {
- // Enable vertex attributes: normals (shader-location = 2)
- void *normals = mesh->animNormals != NULL ? mesh->animNormals : mesh->normals;
- mesh->vboId[2] = rlLoadVertexBuffer(normals, mesh->vertexCount*3*sizeof(float), dynamic);
- rlSetVertexAttribute(2, 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(2);
- }
- else
- {
- // Default vertex attribute: normal
- // WARNING: Default value provided to shader if location available
- float value[3] = { 1.0f, 1.0f, 1.0f };
- rlSetVertexAttributeDefault(2, value, SHADER_ATTRIB_VEC3, 3);
- rlDisableVertexAttribute(2);
- }
-
- if (mesh->colors != NULL)
- {
- // Enable vertex attribute: color (shader-location = 3)
- mesh->vboId[3] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
- rlSetVertexAttribute(3, 4, RL_UNSIGNED_BYTE, 1, 0, 0);
- rlEnableVertexAttribute(3);
- }
- else
- {
- // Default vertex attribute: color
- // WARNING: Default value provided to shader if location available
- float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; // WHITE
- rlSetVertexAttributeDefault(3, value, SHADER_ATTRIB_VEC4, 4);
- rlDisableVertexAttribute(3);
- }
-
- if (mesh->tangents != NULL)
- {
- // Enable vertex attribute: tangent (shader-location = 4)
- mesh->vboId[4] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic);
- rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(4);
- }
- else
- {
- // Default vertex attribute: tangent
- // WARNING: Default value provided to shader if location available
- float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
- rlSetVertexAttributeDefault(4, value, SHADER_ATTRIB_VEC4, 4);
- rlDisableVertexAttribute(4);
- }
-
- if (mesh->texcoords2 != NULL)
- {
- // Enable vertex attribute: texcoord2 (shader-location = 5)
- mesh->vboId[5] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic);
- rlSetVertexAttribute(5, 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(5);
- }
- else
- {
- // Default vertex attribute: texcoord2
- // WARNING: Default value provided to shader if location available
- float value[2] = { 0.0f, 0.0f };
- rlSetVertexAttributeDefault(5, value, SHADER_ATTRIB_VEC2, 2);
- rlDisableVertexAttribute(5);
- }
-
- if (mesh->indices != NULL)
- {
- mesh->vboId[6] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic);
- }
-
- if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
- else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)");
-
- rlDisableVertexArray();
-#endif
-}
-
-// Update mesh vertex data in GPU for a specific buffer index
-void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset)
-{
- rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset);
-}
-
-// Draw a 3d mesh with material and transform
-void DrawMesh(Mesh mesh, Material material, Matrix transform)
-{
-#if defined(GRAPHICS_API_OPENGL_11)
- #define GL_VERTEX_ARRAY 0x8074
- #define GL_NORMAL_ARRAY 0x8075
- #define GL_COLOR_ARRAY 0x8076
- #define GL_TEXTURE_COORD_ARRAY 0x8078
-
- rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id);
-
- rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices);
- rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords);
- rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals);
- rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors);
-
- rlPushMatrix();
- rlMultMatrixf(MatrixToFloat(transform));
- rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r,
- material.maps[MATERIAL_MAP_DIFFUSE].color.g,
- material.maps[MATERIAL_MAP_DIFFUSE].color.b,
- material.maps[MATERIAL_MAP_DIFFUSE].color.a);
-
- if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices);
- else rlDrawVertexArray(0, mesh.vertexCount);
- rlPopMatrix();
-
- rlDisableStatePointer(GL_VERTEX_ARRAY);
- rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY);
- rlDisableStatePointer(GL_NORMAL_ARRAY);
- rlDisableStatePointer(GL_COLOR_ARRAY);
-
- rlDisableTexture();
-#endif
-
-#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
- // Bind shader program
- rlEnableShader(material.shader.id);
-
- // Send required data to shader (matrices, values)
- //-----------------------------------------------------
- // Upload to shader material.colDiffuse
- if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
- {
- float values[4] = {
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
- };
-
- rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
- }
-
- // Upload to shader material.colSpecular (if location available)
- if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
- {
- float values[4] = {
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f
- };
-
- rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
- }
-
- // Get a copy of current matrices to work with,
- // just in case stereo render is required, and we need to modify them
- // NOTE: At this point the modelview matrix just contains the view matrix (camera)
- // That's because BeginMode3D() sets it and there is no model-drawing function
- // that modifies it, all use rlPushMatrix() and rlPopMatrix()
- Matrix matModel = MatrixIdentity();
- Matrix matView = rlGetMatrixModelview();
- Matrix matModelView = MatrixIdentity();
- Matrix matProjection = rlGetMatrixProjection();
-
- // Upload view and projection matrices (if locations available)
- if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
- if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
-
- // Model transformation matrix is sent to shader uniform location: SHADER_LOC_MATRIX_MODEL
- if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], transform);
-
- // Accumulate several model transformations:
- // transform: model transformation provided (includes DrawModel() params combined with model.transform)
- // rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack
- matModel = MatrixMultiply(transform, rlGetMatrixTransform());
-
- // Get model-view matrix
- matModelView = MatrixMultiply(matModel, matView);
-
- // Upload model normal matrix (if locations available)
- if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel)));
- //-----------------------------------------------------
-
- // Bind active texture maps (if available)
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id > 0)
- {
- // Select current shader texture slot
- rlActiveTextureSlot(i);
-
- // Enable texture for active slot
- if ((i == MATERIAL_MAP_IRRADIANCE) ||
- (i == MATERIAL_MAP_PREFILTER) ||
- (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
- else rlEnableTexture(material.maps[i].texture.id);
-
- rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
- }
- }
-
- // Try binding vertex array objects (VAO) or use VBOs if not possible
- // WARNING: UploadMesh() enables all vertex attributes available in mesh and sets default attribute values
- // for shader expected vertex attributes that are not provided by the mesh (i.e. colors)
- // This could be a dangerous approach because different meshes with different shaders can enable/disable some attributes
- if (!rlEnableVertexArray(mesh.vaoId))
- {
- // Bind mesh VBO data: vertex position (shader-location = 0)
- rlEnableVertexBuffer(mesh.vboId[0]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
-
- // Bind mesh VBO data: vertex texcoords (shader-location = 1)
- rlEnableVertexBuffer(mesh.vboId[1]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
-
- if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
- {
- // Bind mesh VBO data: vertex normals (shader-location = 2)
- rlEnableVertexBuffer(mesh.vboId[2]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
- }
-
- // Bind mesh VBO data: vertex colors (shader-location = 3, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
- {
- if (mesh.vboId[3] != 0)
- {
- rlEnableVertexBuffer(mesh.vboId[3]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
- }
- else
- {
- // Set default value for defined vertex attribute in shader but not provided by mesh
- // WARNING: It could result in GPU undefined behaviour
- float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
- rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4);
- rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
- }
- }
-
- // Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
- {
- rlEnableVertexBuffer(mesh.vboId[4]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
- }
-
- // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
- {
- rlEnableVertexBuffer(mesh.vboId[5]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
- }
-
- if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]);
- }
-
- // WARNING: Disable vertex attribute color input if mesh can not provide that data (despite location being enabled in shader)
- if (mesh.vboId[3] == 0) rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
-
- int eyeCount = 1;
- if (rlIsStereoRenderEnabled()) eyeCount = 2;
-
- for (int eye = 0; eye < eyeCount; eye++)
- {
- // Calculate model-view-projection matrix (MVP)
- Matrix matModelViewProjection = MatrixIdentity();
- if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection);
- else
- {
- // Setup current eye viewport (half screen width)
- rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
- matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
- }
-
- // Send combined model-view-projection matrix to shader
- rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection);
-
- // Draw mesh
- if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0);
- else rlDrawVertexArray(0, mesh.vertexCount);
- }
-
- // Unbind all bound texture maps
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id > 0)
- {
- // Select current shader texture slot
- rlActiveTextureSlot(i);
-
- // Disable texture for active slot
- if ((i == MATERIAL_MAP_IRRADIANCE) ||
- (i == MATERIAL_MAP_PREFILTER) ||
- (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
- else rlDisableTexture();
- }
- }
-
- // Disable all possible vertex array objects (or VBOs)
- rlDisableVertexArray();
- rlDisableVertexBuffer();
- rlDisableVertexBufferElement();
-
- // Disable shader program
- rlDisableShader();
-
- // Restore rlgl internal modelview and projection matrices
- rlSetMatrixModelview(matView);
- rlSetMatrixProjection(matProjection);
-#endif
-}
-
-// Draw multiple mesh instances with material and different transforms
-void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances)
-{
-#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
- // Instancing required variables
- float16 *instanceTransforms = NULL;
- unsigned int instancesVboId = 0;
-
- // Bind shader program
- rlEnableShader(material.shader.id);
-
- // Send required data to shader (matrices, values)
- //-----------------------------------------------------
- // Upload to shader material.colDiffuse
- if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
- {
- float values[4] = {
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
- };
-
- rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
- }
-
- // Upload to shader material.colSpecular (if location available)
- if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
- {
- float values[4] = {
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f
- };
-
- rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
- }
-
- // Get a copy of current matrices to work with,
- // just in case stereo render is required, and we need to modify them
- // NOTE: At this point the modelview matrix just contains the view matrix (camera)
- // That's because BeginMode3D() sets it and there is no model-drawing function
- // that modifies it, all use rlPushMatrix() and rlPopMatrix()
- Matrix matModel = MatrixIdentity();
- Matrix matView = rlGetMatrixModelview();
- Matrix matModelView = MatrixIdentity();
- Matrix matProjection = rlGetMatrixProjection();
-
- // Upload view and projection matrices (if locations available)
- if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
- if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
-
- // Create instances buffer
- instanceTransforms = (float16 *)RL_MALLOC(instances*sizeof(float16));
-
- // Fill buffer with instances transformations as float16 arrays
- for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]);
-
- // Enable mesh VAO to attach new buffer
- rlEnableVertexArray(mesh.vaoId);
-
- // This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData().
- // It isn't clear which would be reliably faster in all cases and on all platforms,
- // anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems
- // no faster, since we're transferring all the transform matrices anyway
- instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false);
-
- // Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL
- for (unsigned int i = 0; i < 4; i++)
- {
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), (void *)(i*sizeof(Vector4)));
- rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1);
- }
-
- rlDisableVertexBuffer();
- rlDisableVertexArray();
-
- // Accumulate internal matrix transform (push/pop) and view matrix
- // NOTE: In this case, model instance transformation must be computed in the shader
- matModelView = MatrixMultiply(rlGetMatrixTransform(), matView);
-
- // Upload model normal matrix (if locations available)
- if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel)));
- //-----------------------------------------------------
-
- // Bind active texture maps (if available)
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id > 0)
- {
- // Select current shader texture slot
- rlActiveTextureSlot(i);
-
- // Enable texture for active slot
- if ((i == MATERIAL_MAP_IRRADIANCE) ||
- (i == MATERIAL_MAP_PREFILTER) ||
- (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
- else rlEnableTexture(material.maps[i].texture.id);
-
- rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
- }
- }
-
- // Try binding vertex array objects (VAO)
- // or use VBOs if not possible
- if (!rlEnableVertexArray(mesh.vaoId))
- {
- // Bind mesh VBO data: vertex position (shader-location = 0)
- rlEnableVertexBuffer(mesh.vboId[0]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
-
- // Bind mesh VBO data: vertex texcoords (shader-location = 1)
- rlEnableVertexBuffer(mesh.vboId[1]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
-
- if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
- {
- // Bind mesh VBO data: vertex normals (shader-location = 2)
- rlEnableVertexBuffer(mesh.vboId[2]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
- }
-
- // Bind mesh VBO data: vertex colors (shader-location = 3, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
- {
- if (mesh.vboId[3] != 0)
- {
- rlEnableVertexBuffer(mesh.vboId[3]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
- }
- else
- {
- // Set default value for unused attribute
- // NOTE: Required when using default shader and no VAO support
- float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
- rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4);
- rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
- }
- }
-
- // Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
- {
- rlEnableVertexBuffer(mesh.vboId[4]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
- }
-
- // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
- {
- rlEnableVertexBuffer(mesh.vboId[5]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
- }
-
- if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]);
- }
-
- // WARNING: Disable vertex attribute color input if mesh can not provide that data (despite location being enabled in shader)
- if (mesh.vboId[3] == 0) rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
-
- int eyeCount = 1;
- if (rlIsStereoRenderEnabled()) eyeCount = 2;
-
- for (int eye = 0; eye < eyeCount; eye++)
- {
- // Calculate model-view-projection matrix (MVP)
- Matrix matModelViewProjection = MatrixIdentity();
- if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection);
- else
- {
- // Setup current eye viewport (half screen width)
- rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
- matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
- }
-
- // Send combined model-view-projection matrix to shader
- rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection);
-
- // Draw mesh instanced
- if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances);
- else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances);
- }
-
- // Unbind all bound texture maps
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id > 0)
- {
- // Select current shader texture slot
- rlActiveTextureSlot(i);
-
- // Disable texture for active slot
- if ((i == MATERIAL_MAP_IRRADIANCE) ||
- (i == MATERIAL_MAP_PREFILTER) ||
- (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
- else rlDisableTexture();
- }
- }
-
- // Disable all possible vertex array objects (or VBOs)
- rlDisableVertexArray();
- rlDisableVertexBuffer();
- rlDisableVertexBufferElement();
-
- // Disable shader program
- rlDisableShader();
-
- // Remove instance transforms buffer
- rlUnloadVertexBuffer(instancesVboId);
- RL_FREE(instanceTransforms);
-#endif
-}
-
-// Unload mesh from memory (RAM and VRAM)
-void UnloadMesh(Mesh mesh)
-{
- // Unload rlgl mesh vboId data
- rlUnloadVertexArray(mesh.vaoId);
-
- if (mesh.vboId != NULL) for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]);
- RL_FREE(mesh.vboId);
-
- RL_FREE(mesh.vertices);
- RL_FREE(mesh.texcoords);
- RL_FREE(mesh.normals);
- RL_FREE(mesh.colors);
- RL_FREE(mesh.tangents);
- RL_FREE(mesh.texcoords2);
- RL_FREE(mesh.indices);
-
- RL_FREE(mesh.animVertices);
- RL_FREE(mesh.animNormals);
- RL_FREE(mesh.boneWeights);
- RL_FREE(mesh.boneIds);
-}
-
-// Export mesh data to file
-bool ExportMesh(Mesh mesh, const char *fileName)
-{
- bool success = false;
-
- if (IsFileExtension(fileName, ".obj"))
- {
- // Estimated data size, it should be enough...
- int dataSize = mesh.vertexCount*(int)strlen("v 0000.00f 0000.00f 0000.00f") +
- mesh.vertexCount*(int)strlen("vt 0.000f 0.00f") +
- mesh.vertexCount*(int)strlen("vn 0.000f 0.00f 0.00f") +
- mesh.triangleCount*(int)strlen("f 00000/00000/00000 00000/00000/00000 00000/00000/00000");
-
- // NOTE: Text data buffer size is estimated considering mesh data size
- char *txtData = (char *)RL_CALLOC(dataSize*2 + 2000, sizeof(char));
-
- int byteCount = 0;
- byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n");
- byteCount += sprintf(txtData + byteCount, "# // //\n");
- byteCount += sprintf(txtData + byteCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n");
- byteCount += sprintf(txtData + byteCount, "# // //\n");
- byteCount += sprintf(txtData + byteCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n");
- byteCount += sprintf(txtData + byteCount, "# // feedback and support: ray[at]raylib.com //\n");
- byteCount += sprintf(txtData + byteCount, "# // //\n");
- byteCount += sprintf(txtData + byteCount, "# // Copyright (c) 2018-2023 Ramon Santamaria (@raysan5) //\n");
- byteCount += sprintf(txtData + byteCount, "# // //\n");
- byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
- byteCount += sprintf(txtData + byteCount, "# Vertex Count: %i\n", mesh.vertexCount);
- byteCount += sprintf(txtData + byteCount, "# Triangle Count: %i\n\n", mesh.triangleCount);
-
- byteCount += sprintf(txtData + byteCount, "g mesh\n");
-
- for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
- {
- byteCount += sprintf(txtData + byteCount, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
- }
-
- for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
- {
- byteCount += sprintf(txtData + byteCount, "vt %.3f %.3f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
- }
-
- for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
- {
- byteCount += sprintf(txtData + byteCount, "vn %.3f %.3f %.3f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
- }
-
- if (mesh.indices != NULL)
- {
- for (int i = 0, v = 0; i < mesh.triangleCount; i++, v += 3)
- {
- byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n",
- mesh.indices[v] + 1, mesh.indices[v] + 1, mesh.indices[v] + 1,
- mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1,
- mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1);
- }
- }
- else
- {
- for (int i = 0, v = 1; i < mesh.triangleCount; i++, v += 3)
- {
- byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", v, v, v, v + 1, v + 1, v + 1, v + 2, v + 2, v + 2);
- }
- }
-
- byteCount += sprintf(txtData + byteCount, "\n");
-
- // NOTE: Text data length exported is determined by '\0' (NULL) character
- success = SaveFileText(fileName, txtData);
-
- RL_FREE(txtData);
- }
- else if (IsFileExtension(fileName, ".raw"))
- {
- // TODO: Support additional file formats to export mesh vertex data
- }
-
- return success;
-}
-
-#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
-// Process obj materials
-static void ProcessMaterialsOBJ(Material *materials, tinyobj_material_t *mats, int materialCount)
-{
- // Init model mats
- for (int m = 0; m < materialCount; m++)
- {
- // Init material to default
- // NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE
- materials[m] = LoadMaterialDefault();
-
- // Get default texture, in case no texture is defined
- // NOTE: rlgl default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8
- materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
-
- if (mats[m].diffuse_texname != NULL) materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(mats[m].diffuse_texname); //char *diffuse_texname; // map_Kd
- else materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(mats[m].diffuse[0]*255.0f), (unsigned char)(mats[m].diffuse[1]*255.0f), (unsigned char)(mats[m].diffuse[2] * 255.0f), 255 }; //float diffuse[3];
- materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
-
- if (mats[m].specular_texname != NULL) materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(mats[m].specular_texname); //char *specular_texname; // map_Ks
- materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(mats[m].specular[0]*255.0f), (unsigned char)(mats[m].specular[1]*255.0f), (unsigned char)(mats[m].specular[2] * 255.0f), 255 }; //float specular[3];
- materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f;
-
- if (mats[m].bump_texname != NULL) materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(mats[m].bump_texname); //char *bump_texname; // map_bump, bump
- materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE;
- materials[m].maps[MATERIAL_MAP_NORMAL].value = mats[m].shininess;
-
- materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(mats[m].emission[0]*255.0f), (unsigned char)(mats[m].emission[1]*255.0f), (unsigned char)(mats[m].emission[2] * 255.0f), 255 }; //float emission[3];
-
- if (mats[m].displacement_texname != NULL) materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(mats[m].displacement_texname); //char *displacement_texname; // disp
- }
-}
-#endif
-
-// Load materials from model file
-Material *LoadMaterials(const char *fileName, int *materialCount)
-{
- Material *materials = NULL;
- unsigned int count = 0;
-
- // TODO: Support IQM and GLTF for materials parsing
-
-#if defined(SUPPORT_FILEFORMAT_MTL)
- if (IsFileExtension(fileName, ".mtl"))
- {
- tinyobj_material_t *mats = NULL;
-
- int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
- if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName);
-
- materials = MemAlloc(count*sizeof(Material));
- ProcessMaterialsOBJ(materials, mats, count);
-
- tinyobj_materials_free(mats, count);
- }
-#else
- TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName);
-#endif
-
- *materialCount = count;
- return materials;
-}
-
-// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
-Material LoadMaterialDefault(void)
-{
- Material material = { 0 };
- material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
-
- // Using rlgl default shader
- material.shader.id = rlGetShaderIdDefault();
- material.shader.locs = rlGetShaderLocsDefault();
-
- // Using rlgl default texture (1x1 pixel, UNCOMPRESSED_R8G8B8A8, 1 mipmap)
- material.maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
- //material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set
- //material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set
-
- material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color
- material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color
-
- return material;
-}
-
-// Check if a material is ready
-bool IsMaterialReady(Material material)
-{
- return ((material.maps != NULL) && // Validate material contain some map
- (material.shader.id > 0)); // Validate material shader is valid
-}
-
-// Unload material from memory
-void UnloadMaterial(Material material)
-{
- // Unload material shader (avoid unloading default shader, managed by raylib)
- if (material.shader.id != rlGetShaderIdDefault()) UnloadShader(material.shader);
-
- // Unload loaded texture maps (avoid unloading default texture, managed by raylib)
- if (material.maps != NULL)
- {
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id != rlGetTextureIdDefault()) rlUnloadTexture(material.maps[i].texture.id);
- }
- }
-
- RL_FREE(material.maps);
-}
-
-// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...)
-// NOTE: Previous texture should be manually unloaded
-void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
-{
- material->maps[mapType].texture = texture;
-}
-
-// Set the material for a mesh
-void SetModelMeshMaterial(Model *model, int meshId, int materialId)
-{
- if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count");
- else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count");
- else model->meshMaterial[meshId] = materialId;
-}
-
-// Load model animations from file
-ModelAnimation *LoadModelAnimations(const char *fileName, unsigned int *animCount)
-{
- ModelAnimation *animations = NULL;
-
-#if defined(SUPPORT_FILEFORMAT_IQM)
- if (IsFileExtension(fileName, ".iqm")) animations = LoadModelAnimationsIQM(fileName, animCount);
-#endif
-#if defined(SUPPORT_FILEFORMAT_M3D)
- if (IsFileExtension(fileName, ".m3d")) animations = LoadModelAnimationsM3D(fileName, animCount);
-#endif
-#if defined(SUPPORT_FILEFORMAT_GLTF)
- if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadModelAnimationsGLTF(fileName, animCount);
-#endif
-
- return animations;
-}
-
-// Update model animated vertex data (positions and normals) for a given frame
-// NOTE: Updated data is uploaded to GPU
-void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
-{
- if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
- {
- if (frame >= anim.frameCount) frame = frame%anim.frameCount;
-
- for (int m = 0; m < model.meshCount; m++)
- {
- Mesh mesh = model.meshes[m];
-
- if (mesh.boneIds == NULL || mesh.boneWeights == NULL)
- {
- TRACELOG(LOG_WARNING, "MODEL: UpdateModelAnimation(): Mesh %i has no connection to bones", m);
- continue;
- }
-
- bool updated = false; // Flag to check when anim vertex information is updated
- Vector3 animVertex = { 0 };
- Vector3 animNormal = { 0 };
-
- Vector3 inTranslation = { 0 };
- Quaternion inRotation = { 0 };
- // Vector3 inScale = { 0 };
-
- Vector3 outTranslation = { 0 };
- Quaternion outRotation = { 0 };
- Vector3 outScale = { 0 };
-
- int boneId = 0;
- int boneCounter = 0;
- float boneWeight = 0.0;
-
- const int vValues = mesh.vertexCount*3;
- for (int vCounter = 0; vCounter < vValues; vCounter += 3)
- {
- mesh.animVertices[vCounter] = 0;
- mesh.animVertices[vCounter + 1] = 0;
- mesh.animVertices[vCounter + 2] = 0;
-
- if (mesh.animNormals != NULL)
- {
- mesh.animNormals[vCounter] = 0;
- mesh.animNormals[vCounter + 1] = 0;
- mesh.animNormals[vCounter + 2] = 0;
- }
-
- // Iterates over 4 bones per vertex
- for (int j = 0; j < 4; j++, boneCounter++)
- {
- boneWeight = mesh.boneWeights[boneCounter];
-
- // Early stop when no transformation will be applied
- if (boneWeight == 0.0f) continue;
-
- boneId = mesh.boneIds[boneCounter];
- //int boneIdParent = model.bones[boneId].parent;
- inTranslation = model.bindPose[boneId].translation;
- inRotation = model.bindPose[boneId].rotation;
- //inScale = model.bindPose[boneId].scale;
- outTranslation = anim.framePoses[frame][boneId].translation;
- outRotation = anim.framePoses[frame][boneId].rotation;
- outScale = anim.framePoses[frame][boneId].scale;
-
- // Vertices processing
- // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
- animVertex = (Vector3){ mesh.vertices[vCounter], mesh.vertices[vCounter + 1], mesh.vertices[vCounter + 2] };
- animVertex = Vector3Subtract(animVertex, inTranslation);
- animVertex = Vector3Multiply(animVertex, outScale);
- animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
- animVertex = Vector3Add(animVertex, outTranslation);
- //animVertex = Vector3Transform(animVertex, model.transform);
- mesh.animVertices[vCounter] += animVertex.x*boneWeight;
- mesh.animVertices[vCounter + 1] += animVertex.y*boneWeight;
- mesh.animVertices[vCounter + 2] += animVertex.z*boneWeight;
- updated = true;
-
- // Normals processing
- // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
- if (mesh.normals != NULL)
- {
- animNormal = (Vector3){ mesh.normals[vCounter], mesh.normals[vCounter + 1], mesh.normals[vCounter + 2] };
- animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
- mesh.animNormals[vCounter] += animNormal.x*boneWeight;
- mesh.animNormals[vCounter + 1] += animNormal.y*boneWeight;
- mesh.animNormals[vCounter + 2] += animNormal.z*boneWeight;
- }
- }
- }
-
- // Upload new vertex data to GPU for model drawing
- // NOTE: Only update data when values changed
- if (updated)
- {
- rlUpdateVertexBuffer(mesh.vboId[0], mesh.animVertices, mesh.vertexCount*3*sizeof(float), 0); // Update vertex position
- rlUpdateVertexBuffer(mesh.vboId[2], mesh.animNormals, mesh.vertexCount*3*sizeof(float), 0); // Update vertex normals
- }
- }
- }
-}
-
-// Unload animation array data
-void UnloadModelAnimations(ModelAnimation *animations, unsigned int count)
-{
- for (unsigned int i = 0; i < count; i++) UnloadModelAnimation(animations[i]);
- RL_FREE(animations);
-}
-
-// Unload animation data
-void UnloadModelAnimation(ModelAnimation anim)
-{
- for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
-
- RL_FREE(anim.bones);
- RL_FREE(anim.framePoses);
-}
-
-// Check model animation skeleton match
-// NOTE: Only number of bones and parent connections are checked
-bool IsModelAnimationValid(Model model, ModelAnimation anim)
-{
- int result = true;
-
- if (model.boneCount != anim.boneCount) result = false;
- else
- {
- for (int i = 0; i < model.boneCount; i++)
- {
- if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
- }
- }
-
- return result;
-}
-
-#if defined(SUPPORT_MESH_GENERATION)
-// Generate polygonal mesh
-Mesh GenMeshPoly(int sides, float radius)
-{
- Mesh mesh = { 0 };
-
- if (sides < 3) return mesh;
-
- int vertexCount = sides*3;
-
- // Vertices definition
- Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
-
- float d = 0.0f, dStep = 360.0f/sides;
- for (int v = 0; v < vertexCount; v += 3)
- {
- vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
- vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius };
- vertices[v + 2] = (Vector3){sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius };
- d += dStep;
- }
-
- // Normals definition
- Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
- for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
-
- // TexCoords definition
- Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
- for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
-
- mesh.vertexCount = vertexCount;
- mesh.triangleCount = sides;
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
-
- // Mesh vertices position array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.vertices[3*i] = vertices[i].x;
- mesh.vertices[3*i + 1] = vertices[i].y;
- mesh.vertices[3*i + 2] = vertices[i].z;
- }
-
- // Mesh texcoords array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.texcoords[2*i] = texcoords[i].x;
- mesh.texcoords[2*i + 1] = texcoords[i].y;
- }
-
- // Mesh normals array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.normals[3*i] = normals[i].x;
- mesh.normals[3*i + 1] = normals[i].y;
- mesh.normals[3*i + 2] = normals[i].z;
- }
-
- RL_FREE(vertices);
- RL_FREE(normals);
- RL_FREE(texcoords);
-
- // Upload vertex data to GPU (static mesh)
- // NOTE: mesh.vboId array is allocated inside UploadMesh()
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generate plane mesh (with subdivisions)
-Mesh GenMeshPlane(float width, float length, int resX, int resZ)
-{
- Mesh mesh = { 0 };
-
-#define CUSTOM_MESH_GEN_PLANE
-#if defined(CUSTOM_MESH_GEN_PLANE)
- resX++;
- resZ++;
-
- // Vertices definition
- int vertexCount = resX*resZ; // vertices get reused for the faces
-
- Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
- for (int z = 0; z < resZ; z++)
- {
- // [-length/2, length/2]
- float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
- for (int x = 0; x < resX; x++)
- {
- // [-width/2, width/2]
- float xPos = ((float)x/(resX - 1) - 0.5f)*width;
- vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
- }
- }
-
- // Normals definition
- Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
- for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
-
- // TexCoords definition
- Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
- for (int v = 0; v < resZ; v++)
- {
- for (int u = 0; u < resX; u++)
- {
- texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
- }
- }
-
- // Triangles definition (indices)
- int numFaces = (resX - 1)*(resZ - 1);
- int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
- int t = 0;
- for (int face = 0; face < numFaces; face++)
- {
- // Retrieve lower left corner from face ind
- int i = face % (resX - 1) + (face/(resZ - 1)*resX);
-
- triangles[t++] = i + resX;
- triangles[t++] = i + 1;
- triangles[t++] = i;
-
- triangles[t++] = i + resX;
- triangles[t++] = i + resX + 1;
- triangles[t++] = i + 1;
- }
-
- mesh.vertexCount = vertexCount;
- mesh.triangleCount = numFaces*2;
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
-
- // Mesh vertices position array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.vertices[3*i] = vertices[i].x;
- mesh.vertices[3*i + 1] = vertices[i].y;
- mesh.vertices[3*i + 2] = vertices[i].z;
- }
-
- // Mesh texcoords array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.texcoords[2*i] = texcoords[i].x;
- mesh.texcoords[2*i + 1] = texcoords[i].y;
- }
-
- // Mesh normals array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.normals[3*i] = normals[i].x;
- mesh.normals[3*i + 1] = normals[i].y;
- mesh.normals[3*i + 2] = normals[i].z;
- }
-
- // Mesh indices array initialization
- for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
-
- RL_FREE(vertices);
- RL_FREE(normals);
- RL_FREE(texcoords);
- RL_FREE(triangles);
-
-#else // Use par_shapes library to generate plane mesh
-
- par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!!
- par_shapes_scale(plane, width, length, 1.0f);
- par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_translate(plane, -width/2, 0.0f, length/2);
-
- mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = plane->ntriangles*3;
- mesh.triangleCount = plane->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
- mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
- mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(plane);
-#endif
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generated cuboid mesh
-Mesh GenMeshCube(float width, float height, float length)
-{
- Mesh mesh = { 0 };
-
-#define CUSTOM_MESH_GEN_CUBE
-#if defined(CUSTOM_MESH_GEN_CUBE)
- float vertices[] = {
- -width/2, -height/2, length/2,
- width/2, -height/2, length/2,
- width/2, height/2, length/2,
- -width/2, height/2, length/2,
- -width/2, -height/2, -length/2,
- -width/2, height/2, -length/2,
- width/2, height/2, -length/2,
- width/2, -height/2, -length/2,
- -width/2, height/2, -length/2,
- -width/2, height/2, length/2,
- width/2, height/2, length/2,
- width/2, height/2, -length/2,
- -width/2, -height/2, -length/2,
- width/2, -height/2, -length/2,
- width/2, -height/2, length/2,
- -width/2, -height/2, length/2,
- width/2, -height/2, -length/2,
- width/2, height/2, -length/2,
- width/2, height/2, length/2,
- width/2, -height/2, length/2,
- -width/2, -height/2, -length/2,
- -width/2, -height/2, length/2,
- -width/2, height/2, length/2,
- -width/2, height/2, -length/2
- };
-
- float texcoords[] = {
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f
- };
-
- float normals[] = {
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f
- };
-
- mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
- memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
-
- mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
- memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
-
- mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
- memcpy(mesh.normals, normals, 24*3*sizeof(float));
-
- mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
-
- int k = 0;
-
- // Indices can be initialized right now
- for (int i = 0; i < 36; i += 6)
- {
- mesh.indices[i] = 4*k;
- mesh.indices[i + 1] = 4*k + 1;
- mesh.indices[i + 2] = 4*k + 2;
- mesh.indices[i + 3] = 4*k;
- mesh.indices[i + 4] = 4*k + 2;
- mesh.indices[i + 5] = 4*k + 3;
-
- k++;
- }
-
- mesh.vertexCount = 24;
- mesh.triangleCount = 12;
-
-#else // Use par_shapes library to generate cube mesh
-/*
-// Platonic solids:
-par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid)
-par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube)
-par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (dyamond)
-par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron
-par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron
-*/
- // Platonic solid generation: cube (6 sides)
- // NOTE: No normals/texcoords generated by default
- par_shapes_mesh *cube = par_shapes_create_cube();
- cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
- for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
- par_shapes_scale(cube, width, height, length);
- par_shapes_translate(cube, -width/2, 0.0f, -length/2);
- par_shapes_compute_normals(cube);
-
- mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = cube->ntriangles*3;
- mesh.triangleCount = cube->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
- mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
- mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(cube);
-#endif
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generate sphere mesh (standard sphere)
-Mesh GenMeshSphere(float radius, int rings, int slices)
-{
- Mesh mesh = { 0 };
-
- if ((rings >= 3) && (slices >= 3))
- {
- par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
- par_shapes_scale(sphere, radius, radius, radius);
- // NOTE: Soft normals are computed internally
-
- mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = sphere->ntriangles*3;
- mesh.triangleCount = sphere->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
- mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
- mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(sphere);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere");
-
- return mesh;
-}
-
-// Generate hemisphere mesh (half sphere, no bottom cap)
-Mesh GenMeshHemiSphere(float radius, int rings, int slices)
-{
- Mesh mesh = { 0 };
-
- if ((rings >= 3) && (slices >= 3))
- {
- if (radius < 0.0f) radius = 0.0f;
-
- par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
- par_shapes_scale(sphere, radius, radius, radius);
- // NOTE: Soft normals are computed internally
-
- mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = sphere->ntriangles*3;
- mesh.triangleCount = sphere->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
- mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
- mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(sphere);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere");
-
- return mesh;
-}
-
-// Generate cylinder mesh
-Mesh GenMeshCylinder(float radius, float height, int slices)
-{
- Mesh mesh = { 0 };
-
- if (slices >= 3)
- {
- // Instance a cylinder that sits on the Z=0 plane using the given tessellation
- // levels across the UV domain. Think of "slices" like a number of pizza
- // slices, and "stacks" like a number of stacked rings.
- // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
- par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
- par_shapes_scale(cylinder, radius, radius, height);
- par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
-
- // Generate an orientable disk shape (top cap)
- par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
- capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
- for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
- par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_rotate(capTop, 90*DEG2RAD, (float[]){ 0, 1, 0 });
- par_shapes_translate(capTop, 0, height, 0);
-
- // Generate an orientable disk shape (bottom cap)
- par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
- capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
- for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
- par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_rotate(capBottom, -90*DEG2RAD, (float[]){ 0, 1, 0 });
-
- par_shapes_merge_and_free(cylinder, capTop);
- par_shapes_merge_and_free(cylinder, capBottom);
-
- mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = cylinder->ntriangles*3;
- mesh.triangleCount = cylinder->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
- mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
- mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(cylinder);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder");
-
- return mesh;
-}
-
-// Generate cone/pyramid mesh
-Mesh GenMeshCone(float radius, float height, int slices)
-{
- Mesh mesh = { 0 };
-
- if (slices >= 3)
- {
- // Instance a cone that sits on the Z=0 plane using the given tessellation
- // levels across the UV domain. Think of "slices" like a number of pizza
- // slices, and "stacks" like a number of stacked rings.
- // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
- par_shapes_mesh *cone = par_shapes_create_cone(slices, 8);
- par_shapes_scale(cone, radius, radius, height);
- par_shapes_rotate(cone, -PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_rotate(cone, PI/2.0f, (float[]){ 0, 1, 0 });
-
- // Generate an orientable disk shape (bottom cap)
- par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
- capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
- for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
- par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
-
- par_shapes_merge_and_free(cone, capBottom);
-
- mesh.vertices = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(cone->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = cone->ntriangles*3;
- mesh.triangleCount = cone->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = cone->points[cone->triangles[k]*3];
- mesh.vertices[k*3 + 1] = cone->points[cone->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = cone->points[cone->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = cone->normals[cone->triangles[k]*3];
- mesh.normals[k*3 + 1] = cone->normals[cone->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = cone->normals[cone->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = cone->tcoords[cone->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = cone->tcoords[cone->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(cone);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cone");
-
- return mesh;
-}
-
-// Generate torus mesh
-Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
-{
- Mesh mesh = { 0 };
-
- if ((sides >= 3) && (radSeg >= 3))
- {
- if (radius > 1.0f) radius = 1.0f;
- else if (radius < 0.1f) radius = 0.1f;
-
- // Create a donut that sits on the Z=0 plane with the specified inner radius
- // The outer radius can be controlled with par_shapes_scale
- par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
- par_shapes_scale(torus, size/2, size/2, size/2);
-
- mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = torus->ntriangles*3;
- mesh.triangleCount = torus->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
- mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
- mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(torus);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus");
-
- return mesh;
-}
-
-// Generate trefoil knot mesh
-Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
-{
- Mesh mesh = { 0 };
-
- if ((sides >= 3) && (radSeg >= 3))
- {
- if (radius > 3.0f) radius = 3.0f;
- else if (radius < 0.5f) radius = 0.5f;
-
- par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
- par_shapes_scale(knot, size, size, size);
-
- mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = knot->ntriangles*3;
- mesh.triangleCount = knot->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
- mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
- mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(knot);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot");
-
- return mesh;
-}
-
-// Generate a mesh from heightmap
-// NOTE: Vertex data is uploaded to GPU
-Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
-{
- #define GRAY_VALUE(c) ((float)(c.r + c.g + c.b)/3.0f)
-
- Mesh mesh = { 0 };
-
- int mapX = heightmap.width;
- int mapZ = heightmap.height;
-
- Color *pixels = LoadImageColors(heightmap);
-
- // NOTE: One vertex per pixel
- mesh.triangleCount = (mapX - 1)*(mapZ - 1)*2; // One quad every four pixels
-
- mesh.vertexCount = mesh.triangleCount*3;
-
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.colors = NULL;
-
- int vCounter = 0; // Used to count vertices float by float
- int tcCounter = 0; // Used to count texcoords float by float
- int nCounter = 0; // Used to count normals float by float
-
- Vector3 scaleFactor = { size.x/(mapX - 1), size.y/255.0f, size.z/(mapZ - 1) };
-
- Vector3 vA = { 0 };
- Vector3 vB = { 0 };
- Vector3 vC = { 0 };
- Vector3 vN = { 0 };
-
- for (int z = 0; z < mapZ-1; z++)
- {
- for (int x = 0; x < mapX-1; x++)
- {
- // Fill vertices array with data
- //----------------------------------------------------------
-
- // one triangle - 3 vertex
- mesh.vertices[vCounter] = (float)x*scaleFactor.x;
- mesh.vertices[vCounter + 1] = GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
-
- mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
- mesh.vertices[vCounter + 4] = GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
-
- mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
- mesh.vertices[vCounter + 7] = GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
-
- // Another triangle - 3 vertex
- mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
- mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
- mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
-
- mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
- mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
- mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
-
- mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
- mesh.vertices[vCounter + 16] = GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
- vCounter += 18; // 6 vertex, 18 floats
-
- // Fill texcoords array with data
- //--------------------------------------------------------------
- mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
- mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
-
- mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
- mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
-
- mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
- mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
-
- mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
- mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
-
- mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
- mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
-
- mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
- mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
- tcCounter += 12; // 6 texcoords, 12 floats
-
- // Fill normals array with data
- //--------------------------------------------------------------
- for (int i = 0; i < 18; i += 9)
- {
- vA.x = mesh.vertices[nCounter + i];
- vA.y = mesh.vertices[nCounter + i + 1];
- vA.z = mesh.vertices[nCounter + i + 2];
-
- vB.x = mesh.vertices[nCounter + i + 3];
- vB.y = mesh.vertices[nCounter + i + 4];
- vB.z = mesh.vertices[nCounter + i + 5];
-
- vC.x = mesh.vertices[nCounter + i + 6];
- vC.y = mesh.vertices[nCounter + i + 7];
- vC.z = mesh.vertices[nCounter + i + 8];
-
- vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA)));
-
- mesh.normals[nCounter + i] = vN.x;
- mesh.normals[nCounter + i + 1] = vN.y;
- mesh.normals[nCounter + i + 2] = vN.z;
-
- mesh.normals[nCounter + i + 3] = vN.x;
- mesh.normals[nCounter + i + 4] = vN.y;
- mesh.normals[nCounter + i + 5] = vN.z;
-
- mesh.normals[nCounter + i + 6] = vN.x;
- mesh.normals[nCounter + i + 7] = vN.y;
- mesh.normals[nCounter + i + 8] = vN.z;
- }
-
- nCounter += 18; // 6 vertex, 18 floats
- }
- }
-
- UnloadImageColors(pixels); // Unload pixels color data
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generate a cubes mesh from pixel data
-// NOTE: Vertex data is uploaded to GPU
-Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
-{
- #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
-
- Mesh mesh = { 0 };
-
- Color *pixels = LoadImageColors(cubicmap);
-
- // NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
- int maxTriangles = cubicmap.width * cubicmap.height * 12;
-
- int vCounter = 0; // Used to count vertices
- int tcCounter = 0; // Used to count texcoords
- int nCounter = 0; // Used to count normals
-
- float w = cubeSize.x;
- float h = cubeSize.z;
- float h2 = cubeSize.y;
-
- Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
- Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
- Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
-
- // Define the 6 normals of the cube, we will combine them accordingly later...
- Vector3 n1 = { 1.0f, 0.0f, 0.0f };
- Vector3 n2 = { -1.0f, 0.0f, 0.0f };
- Vector3 n3 = { 0.0f, 1.0f, 0.0f };
- Vector3 n4 = { 0.0f, -1.0f, 0.0f };
- Vector3 n5 = { 0.0f, 0.0f, -1.0f };
- Vector3 n6 = { 0.0f, 0.0f, 1.0f };
-
- // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
- typedef struct RectangleF {
- float x;
- float y;
- float width;
- float height;
- } RectangleF;
-
- RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
- RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
- RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
- RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
- RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
- RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
-
- for (int z = 0; z < cubicmap.height; ++z)
- {
- for (int x = 0; x < cubicmap.width; ++x)
- {
- // Define the 8 vertex of the cube, we will combine them accordingly later...
- Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
- Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
- Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
- Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
- Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
- Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
- Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
- Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
-
- // We check pixel color to be WHITE -> draw full cube
- if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE))
- {
- // Define triangles and checking collateral cubes
- //------------------------------------------------
-
- // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
- // WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v2;
- mapVertices[vCounter + 2] = v3;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v3;
- mapVertices[vCounter + 5] = v4;
- vCounter += 6;
-
- mapNormals[nCounter] = n3;
- mapNormals[nCounter + 1] = n3;
- mapNormals[nCounter + 2] = n3;
- mapNormals[nCounter + 3] = n3;
- mapNormals[nCounter + 4] = n3;
- mapNormals[nCounter + 5] = n3;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
- tcCounter += 6;
-
- // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
- mapVertices[vCounter] = v6;
- mapVertices[vCounter + 1] = v8;
- mapVertices[vCounter + 2] = v7;
- mapVertices[vCounter + 3] = v6;
- mapVertices[vCounter + 4] = v5;
- mapVertices[vCounter + 5] = v8;
- vCounter += 6;
-
- mapNormals[nCounter] = n4;
- mapNormals[nCounter + 1] = n4;
- mapNormals[nCounter + 2] = n4;
- mapNormals[nCounter + 3] = n4;
- mapNormals[nCounter + 4] = n4;
- mapNormals[nCounter + 5] = n4;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
- mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- tcCounter += 6;
-
- // Checking cube on bottom of current cube
- if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1))
- {
- // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v2;
- mapVertices[vCounter + 1] = v7;
- mapVertices[vCounter + 2] = v3;
- mapVertices[vCounter + 3] = v3;
- mapVertices[vCounter + 4] = v7;
- mapVertices[vCounter + 5] = v8;
- vCounter += 6;
-
- mapNormals[nCounter] = n6;
- mapNormals[nCounter + 1] = n6;
- mapNormals[nCounter + 2] = n6;
- mapNormals[nCounter + 3] = n6;
- mapNormals[nCounter + 4] = n6;
- mapNormals[nCounter + 5] = n6;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
- mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
- tcCounter += 6;
- }
-
- // Checking cube on top of current cube
- if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0))
- {
- // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v5;
- mapVertices[vCounter + 2] = v6;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v4;
- mapVertices[vCounter + 5] = v5;
- vCounter += 6;
-
- mapNormals[nCounter] = n5;
- mapNormals[nCounter + 1] = n5;
- mapNormals[nCounter + 2] = n5;
- mapNormals[nCounter + 3] = n5;
- mapNormals[nCounter + 4] = n5;
- mapNormals[nCounter + 5] = n5;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
- mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
- tcCounter += 6;
- }
-
- // Checking cube on right of current cube
- if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1))
- {
- // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v3;
- mapVertices[vCounter + 1] = v8;
- mapVertices[vCounter + 2] = v4;
- mapVertices[vCounter + 3] = v4;
- mapVertices[vCounter + 4] = v8;
- mapVertices[vCounter + 5] = v5;
- vCounter += 6;
-
- mapNormals[nCounter] = n1;
- mapNormals[nCounter + 1] = n1;
- mapNormals[nCounter + 2] = n1;
- mapNormals[nCounter + 3] = n1;
- mapNormals[nCounter + 4] = n1;
- mapNormals[nCounter + 5] = n1;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
- mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
- tcCounter += 6;
- }
-
- // Checking cube on left of current cube
- if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0))
- {
- // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v7;
- mapVertices[vCounter + 2] = v2;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v6;
- mapVertices[vCounter + 5] = v7;
- vCounter += 6;
-
- mapNormals[nCounter] = n2;
- mapNormals[nCounter + 1] = n2;
- mapNormals[nCounter + 2] = n2;
- mapNormals[nCounter + 3] = n2;
- mapNormals[nCounter + 4] = n2;
- mapNormals[nCounter + 5] = n2;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
- mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
- tcCounter += 6;
- }
- }
- // We check pixel color to be BLACK, we will only draw floor and roof
- else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK))
- {
- // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v3;
- mapVertices[vCounter + 2] = v2;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v4;
- mapVertices[vCounter + 5] = v3;
- vCounter += 6;
-
- mapNormals[nCounter] = n4;
- mapNormals[nCounter + 1] = n4;
- mapNormals[nCounter + 2] = n4;
- mapNormals[nCounter + 3] = n4;
- mapNormals[nCounter + 4] = n4;
- mapNormals[nCounter + 5] = n4;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
- mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- tcCounter += 6;
-
- // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
- mapVertices[vCounter] = v6;
- mapVertices[vCounter + 1] = v7;
- mapVertices[vCounter + 2] = v8;
- mapVertices[vCounter + 3] = v6;
- mapVertices[vCounter + 4] = v8;
- mapVertices[vCounter + 5] = v5;
- vCounter += 6;
-
- mapNormals[nCounter] = n3;
- mapNormals[nCounter + 1] = n3;
- mapNormals[nCounter + 2] = n3;
- mapNormals[nCounter + 3] = n3;
- mapNormals[nCounter + 4] = n3;
- mapNormals[nCounter + 5] = n3;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
- tcCounter += 6;
- }
- }
- }
-
- // Move data from mapVertices temp arrays to vertices float array
- mesh.vertexCount = vCounter;
- mesh.triangleCount = vCounter/3;
-
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.colors = NULL;
-
- int fCounter = 0;
-
- // Move vertices data
- for (int i = 0; i < vCounter; i++)
- {
- mesh.vertices[fCounter] = mapVertices[i].x;
- mesh.vertices[fCounter + 1] = mapVertices[i].y;
- mesh.vertices[fCounter + 2] = mapVertices[i].z;
- fCounter += 3;
- }
-
- fCounter = 0;
-
- // Move normals data
- for (int i = 0; i < nCounter; i++)
- {
- mesh.normals[fCounter] = mapNormals[i].x;
- mesh.normals[fCounter + 1] = mapNormals[i].y;
- mesh.normals[fCounter + 2] = mapNormals[i].z;
- fCounter += 3;
- }
-
- fCounter = 0;
-
- // Move texcoords data
- for (int i = 0; i < tcCounter; i++)
- {
- mesh.texcoords[fCounter] = mapTexcoords[i].x;
- mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
- fCounter += 2;
- }
-
- RL_FREE(mapVertices);
- RL_FREE(mapNormals);
- RL_FREE(mapTexcoords);
-
- UnloadImageColors(pixels); // Unload pixels color data
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-#endif // SUPPORT_MESH_GENERATION
-
-// Compute mesh bounding box limits
-// NOTE: minVertex and maxVertex should be transformed by model transform matrix
-BoundingBox GetMeshBoundingBox(Mesh mesh)
-{
- // Get min and max vertex to construct bounds (AABB)
- Vector3 minVertex = { 0 };
- Vector3 maxVertex = { 0 };
-
- if (mesh.vertices != NULL)
- {
- minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
- maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
-
- for (int i = 1; i < mesh.vertexCount; i++)
- {
- minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
- maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
- }
- }
-
- // Create the bounding box
- BoundingBox box = { 0 };
- box.min = minVertex;
- box.max = maxVertex;
-
- return box;
-}
-
-// Compute mesh tangents
-// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
-// Implementation based on: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
-void GenMeshTangents(Mesh *mesh)
-{
- if ((mesh->vertices == NULL) || (mesh->texcoords == NULL))
- {
- TRACELOG(LOG_WARNING, "MESH: Tangents generation requires texcoord vertex attribute data");
- return;
- }
-
- if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
- else
- {
- RL_FREE(mesh->tangents);
- mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
- }
-
- Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
- Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
-
- for (int i = 0; i < mesh->vertexCount; i += 3)
- {
- // Get triangle vertices
- Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
- Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
- Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
-
- // Get triangle texcoords
- Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
- Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
- Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
-
- float x1 = v2.x - v1.x;
- float y1 = v2.y - v1.y;
- float z1 = v2.z - v1.z;
- float x2 = v3.x - v1.x;
- float y2 = v3.y - v1.y;
- float z2 = v3.z - v1.z;
-
- float s1 = uv2.x - uv1.x;
- float t1 = uv2.y - uv1.y;
- float s2 = uv3.x - uv1.x;
- float t2 = uv3.y - uv1.y;
-
- float div = s1*t2 - s2*t1;
- float r = (div == 0.0f)? 0.0f : 1.0f/div;
-
- Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
- Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
-
- tan1[i + 0] = sdir;
- tan1[i + 1] = sdir;
- tan1[i + 2] = sdir;
-
- tan2[i + 0] = tdir;
- tan2[i + 1] = tdir;
- tan2[i + 2] = tdir;
- }
-
- // Compute tangents considering normals
- for (int i = 0; i < mesh->vertexCount; i++)
- {
- Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
- Vector3 tangent = tan1[i];
-
- // TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
-#if defined(COMPUTE_TANGENTS_METHOD_01)
- Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent)));
- tmp = Vector3Normalize(tmp);
- mesh->tangents[i*4 + 0] = tmp.x;
- mesh->tangents[i*4 + 1] = tmp.y;
- mesh->tangents[i*4 + 2] = tmp.z;
- mesh->tangents[i*4 + 3] = 1.0f;
-#else
- Vector3OrthoNormalize(&normal, &tangent);
- mesh->tangents[i*4 + 0] = tangent.x;
- mesh->tangents[i*4 + 1] = tangent.y;
- mesh->tangents[i*4 + 2] = tangent.z;
- mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
-#endif
- }
-
- RL_FREE(tan1);
- RL_FREE(tan2);
-
- if (mesh->vboId != NULL)
- {
- if (mesh->vboId[SHADER_LOC_VERTEX_TANGENT] != 0)
- {
- // Update existing vertex buffer
- rlUpdateVertexBuffer(mesh->vboId[SHADER_LOC_VERTEX_TANGENT], mesh->tangents, mesh->vertexCount*4*sizeof(float), 0);
- }
- else
- {
- // Load a new tangent attributes buffer
- mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
- }
-
- rlEnableVertexArray(mesh->vaoId);
- rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(4);
- rlDisableVertexArray();
- }
-
- TRACELOG(LOG_INFO, "MESH: Tangents data computed and uploaded for provided mesh");
-}
-
-// Draw a model (with texture if set)
-void DrawModel(Model model, Vector3 position, float scale, Color tint)
-{
- Vector3 vScale = { scale, scale, scale };
- Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
-
- DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
-}
-
-// Draw a model with extended parameters
-void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
-{
- // Calculate transformation matrix from function parameters
- // Get transform matrix (rotation -> scale -> translation)
- Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
- Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
- Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
-
- Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
-
- // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
- model.transform = MatrixMultiply(model.transform, matTransform);
-
- for (int i = 0; i < model.meshCount; i++)
- {
- Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color;
-
- Color colorTint = WHITE;
- colorTint.r = (unsigned char)((((float)color.r/255.0f)*((float)tint.r/255.0f))*255.0f);
- colorTint.g = (unsigned char)((((float)color.g/255.0f)*((float)tint.g/255.0f))*255.0f);
- colorTint.b = (unsigned char)((((float)color.b/255.0f)*((float)tint.b/255.0f))*255.0f);
- colorTint.a = (unsigned char)((((float)color.a/255.0f)*((float)tint.a/255.0f))*255.0f);
-
- model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint;
- DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
- model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color;
- }
-}
-
-// Draw a model wires (with texture if set)
-void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
-{
- rlEnableWireMode();
-
- DrawModel(model, position, scale, tint);
-
- rlDisableWireMode();
-}
-
-// Draw a model wires (with texture if set) with extended parameters
-void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
-{
- rlEnableWireMode();
-
- DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
-
- rlDisableWireMode();
-}
-
-// Draw a billboard
-void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float size, Color tint)
-{
- Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
-
- DrawBillboardRec(camera, texture, source, position, (Vector2){ size, size }, tint);
-}
-
-// Draw a billboard (part of a texture defined by a rectangle)
-void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint)
-{
- // NOTE: Billboard locked on axis-Y
- Vector3 up = { 0.0f, 1.0f, 0.0f };
-
- DrawBillboardPro(camera, texture, source, position, up, size, Vector2Zero(), 0.0f, tint);
-}
-
-void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint)
-{
- // NOTE: Billboard size will maintain source rectangle aspect ratio, size will represent billboard width
- Vector2 sizeRatio = { size.x*fabsf((float)source.width/source.height), size.y };
-
- Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
-
- Vector3 right = { matView.m0, matView.m4, matView.m8 };
- //Vector3 up = { matView.m1, matView.m5, matView.m9 };
-
- Vector3 rightScaled = Vector3Scale(right, sizeRatio.x/2);
- Vector3 upScaled = Vector3Scale(up, sizeRatio.y/2);
-
- Vector3 p1 = Vector3Add(rightScaled, upScaled);
- Vector3 p2 = Vector3Subtract(rightScaled, upScaled);
-
- Vector3 topLeft = Vector3Scale(p2, -1);
- Vector3 topRight = p1;
- Vector3 bottomRight = p2;
- Vector3 bottomLeft = Vector3Scale(p1, -1);
-
- if (rotation != 0.0f)
- {
- float sinRotation = sinf(rotation*DEG2RAD);
- float cosRotation = cosf(rotation*DEG2RAD);
-
- // NOTE: (-1, 1) is the range where origin.x, origin.y is inside the texture
- float rotateAboutX = sizeRatio.x*origin.x/2;
- float rotateAboutY = sizeRatio.y*origin.y/2;
-
- float xtvalue, ytvalue;
- float rotatedX, rotatedY;
-
- xtvalue = Vector3DotProduct(right, topLeft) - rotateAboutX; // Project points to x and y coordinates on the billboard plane
- ytvalue = Vector3DotProduct(up, topLeft) - rotateAboutY;
- rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX; // Rotate about the point origin
- rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY;
- topLeft = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX)); // Translate back to cartesian coordinates
-
- xtvalue = Vector3DotProduct(right, topRight) - rotateAboutX;
- ytvalue = Vector3DotProduct(up, topRight) - rotateAboutY;
- rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX;
- rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY;
- topRight = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX));
-
- xtvalue = Vector3DotProduct(right, bottomRight) - rotateAboutX;
- ytvalue = Vector3DotProduct(up, bottomRight) - rotateAboutY;
- rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX;
- rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY;
- bottomRight = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX));
-
- xtvalue = Vector3DotProduct(right, bottomLeft)-rotateAboutX;
- ytvalue = Vector3DotProduct(up, bottomLeft)-rotateAboutY;
- rotatedX = xtvalue*cosRotation - ytvalue*sinRotation + rotateAboutX;
- rotatedY = xtvalue*sinRotation + ytvalue*cosRotation + rotateAboutY;
- bottomLeft = Vector3Add(Vector3Scale(up, rotatedY), Vector3Scale(right, rotatedX));
- }
-
- // Translate points to the draw center (position)
- topLeft = Vector3Add(topLeft, position);
- topRight = Vector3Add(topRight, position);
- bottomRight = Vector3Add(bottomRight, position);
- bottomLeft = Vector3Add(bottomLeft, position);
-
- rlSetTexture(texture.id);
-
- rlBegin(RL_QUADS);
- rlColor4ub(tint.r, tint.g, tint.b, tint.a);
-
- if (sizeRatio.x * sizeRatio.y >= 0.0f)
- {
- // Bottom-left corner for texture and quad
- rlTexCoord2f((float)source.x/texture.width, (float)source.y/texture.height);
- rlVertex3f(topLeft.x, topLeft.y, topLeft.z);
-
- // Top-left corner for texture and quad
- rlTexCoord2f((float)source.x/texture.width, (float)(source.y + source.height)/texture.height);
- rlVertex3f(bottomLeft.x, bottomLeft.y, bottomLeft.z);
-
- // Top-right corner for texture and quad
- rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height);
- rlVertex3f(bottomRight.x, bottomRight.y, bottomRight.z);
-
- // Bottom-right corner for texture and quad
- rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)source.y/texture.height);
- rlVertex3f(topRight.x, topRight.y, topRight.z);
- }
- else
- {
- // Reverse vertex order if the size has only one negative dimension
- rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)source.y/texture.height);
- rlVertex3f(topRight.x, topRight.y, topRight.z);
-
- rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height);
- rlVertex3f(bottomRight.x, bottomRight.y, bottomRight.z);
-
- rlTexCoord2f((float)source.x/texture.width, (float)(source.y + source.height)/texture.height);
- rlVertex3f(bottomLeft.x, bottomLeft.y, bottomLeft.z);
-
- rlTexCoord2f((float)source.x/texture.width, (float)source.y/texture.height);
- rlVertex3f(topLeft.x, topLeft.y, topLeft.z);
- }
-
- rlEnd();
-
- rlSetTexture(0);
-}
-
-// Draw a bounding box with wires
-void DrawBoundingBox(BoundingBox box, Color color)
-{
- Vector3 size = { 0 };
-
- size.x = fabsf(box.max.x - box.min.x);
- size.y = fabsf(box.max.y - box.min.y);
- size.z = fabsf(box.max.z - box.min.z);
-
- Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
-
- DrawCubeWires(center, size.x, size.y, size.z, color);
-}
-
-// Check collision between two spheres
-bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2)
-{
- bool collision = false;
-
- // Simple way to check for collision, just checking distance between two points
- // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
- /*
- float dx = center1.x - center2.x; // X distance between centers
- float dy = center1.y - center2.y; // Y distance between centers
- float dz = center1.z - center2.z; // Z distance between centers
-
- float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
-
- if (distance <= (radius1 + radius2)) collision = true;
- */
-
- // Check for distances squared to avoid sqrtf()
- if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true;
-
- return collision;
-}
-
-// Check collision between two boxes
-// NOTE: Boxes are defined by two points minimum and maximum
-bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
-{
- bool collision = true;
-
- if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
- {
- if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
- if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
- }
- else collision = false;
-
- return collision;
-}
-
-// Check collision between box and sphere
-bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
-{
- bool collision = false;
-
- float dmin = 0;
-
- if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
- else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
-
- if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
- else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
-
- if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
- else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
-
- if (dmin <= (radius*radius)) collision = true;
-
- return collision;
-}
-
-// Get collision info between ray and sphere
-RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius)
-{
- RayCollision collision = { 0 };
-
- Vector3 raySpherePos = Vector3Subtract(center, ray.position);
- float vector = Vector3DotProduct(raySpherePos, ray.direction);
- float distance = Vector3Length(raySpherePos);
- float d = radius*radius - (distance*distance - vector*vector);
-
- collision.hit = d >= 0.0f;
-
- // Check if ray origin is inside the sphere to calculate the correct collision point
- if (distance < radius)
- {
- collision.distance = vector + sqrtf(d);
-
- // Calculate collision point
- collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
-
- // Calculate collision normal (pointing outwards)
- collision.normal = Vector3Negate(Vector3Normalize(Vector3Subtract(collision.point, center)));
- }
- else
- {
- collision.distance = vector - sqrtf(d);
-
- // Calculate collision point
- collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
-
- // Calculate collision normal (pointing inwards)
- collision.normal = Vector3Normalize(Vector3Subtract(collision.point, center));
- }
-
- return collision;
-}
-
-// Get collision info between ray and box
-RayCollision GetRayCollisionBox(Ray ray, BoundingBox box)
-{
- RayCollision collision = { 0 };
-
- // Note: If ray.position is inside the box, the distance is negative (as if the ray was reversed)
- // Reversing ray.direction will give use the correct result.
- bool insideBox = (ray.position.x > box.min.x) && (ray.position.x < box.max.x) &&
- (ray.position.y > box.min.y) && (ray.position.y < box.max.y) &&
- (ray.position.z > box.min.z) && (ray.position.z < box.max.z);
-
- if (insideBox) ray.direction = Vector3Negate(ray.direction);
-
- float t[11] = { 0 };
-
- t[8] = 1.0f/ray.direction.x;
- t[9] = 1.0f/ray.direction.y;
- t[10] = 1.0f/ray.direction.z;
-
- t[0] = (box.min.x - ray.position.x)*t[8];
- t[1] = (box.max.x - ray.position.x)*t[8];
- t[2] = (box.min.y - ray.position.y)*t[9];
- t[3] = (box.max.y - ray.position.y)*t[9];
- t[4] = (box.min.z - ray.position.z)*t[10];
- t[5] = (box.max.z - ray.position.z)*t[10];
- t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
- t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
-
- collision.hit = !((t[7] < 0) || (t[6] > t[7]));
- collision.distance = t[6];
- collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
-
- // Get box center point
- collision.normal = Vector3Lerp(box.min, box.max, 0.5f);
- // Get vector center point->hit point
- collision.normal = Vector3Subtract(collision.point, collision.normal);
- // Scale vector to unit cube
- // NOTE: We use an additional .01 to fix numerical errors
- collision.normal = Vector3Scale(collision.normal, 2.01f);
- collision.normal = Vector3Divide(collision.normal, Vector3Subtract(box.max, box.min));
- // The relevant elements of the vector are now slightly larger than 1.0f (or smaller than -1.0f)
- // and the others are somewhere between -1.0 and 1.0 casting to int is exactly our wanted normal!
- collision.normal.x = (float)((int)collision.normal.x);
- collision.normal.y = (float)((int)collision.normal.y);
- collision.normal.z = (float)((int)collision.normal.z);
-
- collision.normal = Vector3Normalize(collision.normal);
-
- if (insideBox)
- {
- // Reset ray.direction
- ray.direction = Vector3Negate(ray.direction);
- // Fix result
- collision.distance *= -1.0f;
- collision.normal = Vector3Negate(collision.normal);
- }
-
- return collision;
-}
-
-// Get collision info between ray and mesh
-RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform)
-{
- RayCollision collision = { 0 };
-
- // Check if mesh vertex data on CPU for testing
- if (mesh.vertices != NULL)
- {
- int triangleCount = mesh.triangleCount;
-
- // Test against all triangles in mesh
- for (int i = 0; i < triangleCount; i++)
- {
- Vector3 a, b, c;
- Vector3* vertdata = (Vector3*)mesh.vertices;
-
- if (mesh.indices)
- {
- a = vertdata[mesh.indices[i*3 + 0]];
- b = vertdata[mesh.indices[i*3 + 1]];
- c = vertdata[mesh.indices[i*3 + 2]];
- }
- else
- {
- a = vertdata[i*3 + 0];
- b = vertdata[i*3 + 1];
- c = vertdata[i*3 + 2];
- }
-
- a = Vector3Transform(a, transform);
- b = Vector3Transform(b, transform);
- c = Vector3Transform(c, transform);
-
- RayCollision triHitInfo = GetRayCollisionTriangle(ray, a, b, c);
-
- if (triHitInfo.hit)
- {
- // Save the closest hit triangle
- if ((!collision.hit) || (collision.distance > triHitInfo.distance)) collision = triHitInfo;
- }
- }
- }
-
- return collision;
-}
-
-// Get collision info between ray and triangle
-// NOTE: The points are expected to be in counter-clockwise winding
-// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
-RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
-{
- #define EPSILON 0.000001f // A small number
-
- RayCollision collision = { 0 };
- Vector3 edge1 = { 0 };
- Vector3 edge2 = { 0 };
- Vector3 p, q, tv;
- float det, invDet, u, v, t;
-
- // Find vectors for two edges sharing V1
- edge1 = Vector3Subtract(p2, p1);
- edge2 = Vector3Subtract(p3, p1);
-
- // Begin calculating determinant - also used to calculate u parameter
- p = Vector3CrossProduct(ray.direction, edge2);
-
- // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
- det = Vector3DotProduct(edge1, p);
-
- // Avoid culling!
- if ((det > -EPSILON) && (det < EPSILON)) return collision;
-
- invDet = 1.0f/det;
-
- // Calculate distance from V1 to ray origin
- tv = Vector3Subtract(ray.position, p1);
-
- // Calculate u parameter and test bound
- u = Vector3DotProduct(tv, p)*invDet;
-
- // The intersection lies outside the triangle
- if ((u < 0.0f) || (u > 1.0f)) return collision;
-
- // Prepare to test v parameter
- q = Vector3CrossProduct(tv, edge1);
-
- // Calculate V parameter and test bound
- v = Vector3DotProduct(ray.direction, q)*invDet;
-
- // The intersection lies outside the triangle
- if ((v < 0.0f) || ((u + v) > 1.0f)) return collision;
-
- t = Vector3DotProduct(edge2, q)*invDet;
-
- if (t > EPSILON)
- {
- // Ray hit, get hit point and normal
- collision.hit = true;
- collision.distance = t;
- collision.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
- collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
- }
-
- return collision;
-}
-
-// Get collision info between ray and quad
-// NOTE: The points are expected to be in counter-clockwise winding
-RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4)
-{
- RayCollision collision = { 0 };
-
- collision = GetRayCollisionTriangle(ray, p1, p2, p4);
-
- if (!collision.hit) collision = GetRayCollisionTriangle(ray, p2, p3, p4);
-
- return collision;
-}
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Definition
-//----------------------------------------------------------------------------------
-#if defined(SUPPORT_FILEFORMAT_IQM) || defined(SUPPORT_FILEFORMAT_GLTF)
-// Build pose from parent joints
-// NOTE: Required for animations loading (required by IQM and GLTF)
-static void BuildPoseFromParentJoints(BoneInfo *bones, int boneCount, Transform *transforms)
-{
- for (int i = 0; i < boneCount; i++)
- {
- if (bones[i].parent >= 0)
- {
- if (bones[i].parent > i)
- {
- TRACELOG(LOG_WARNING, "Assumes bones are toplogically sorted, but bone %d has parent %d. Skipping.", i, bones[i].parent);
- continue;
- }
- transforms[i].rotation = QuaternionMultiply(transforms[bones[i].parent].rotation, transforms[i].rotation);
- transforms[i].translation = Vector3RotateByQuaternion(transforms[i].translation, transforms[bones[i].parent].rotation);
- transforms[i].translation = Vector3Add(transforms[i].translation, transforms[bones[i].parent].translation);
- transforms[i].scale = Vector3Multiply(transforms[i].scale, transforms[bones[i].parent].scale);
- }
- }
-}
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_OBJ)
-// Load OBJ mesh data
-//
-// Keep the following information in mind when reading this
-// - A mesh is created for every material present in the obj file
-// - the model.meshCount is therefore the materialCount returned from tinyobj
-// - the mesh is automatically triangulated by tinyobj
-static Model LoadOBJ(const char *fileName)
-{
- Model model = { 0 };
-
- tinyobj_attrib_t attrib = { 0 };
- tinyobj_shape_t *meshes = NULL;
- unsigned int meshCount = 0;
-
- tinyobj_material_t *materials = NULL;
- unsigned int materialCount = 0;
-
- char *fileText = LoadFileText(fileName);
-
- if (fileText != NULL)
- {
- unsigned int dataSize = (unsigned int)strlen(fileText);
- char currentDir[1024] = { 0 };
- strcpy(currentDir, GetWorkingDirectory());
- const char *workingDir = GetDirectoryPath(fileName);
- if (CHDIR(workingDir) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
- }
-
- unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
- int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileText, dataSize, flags);
-
- if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName);
- else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes/%i materials", fileName, meshCount, materialCount);
-
- model.meshCount = materialCount;
-
- // Init model materials array
- if (materialCount > 0)
- {
- model.materialCount = materialCount;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- TRACELOG(LOG_INFO, "MODEL: model has %i material meshes", materialCount);
- }
- else
- {
- model.meshCount = 1;
- TRACELOG(LOG_INFO, "MODEL: No materials, putting all meshes in a default material");
- }
-
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
-
- // Count the faces for each material
- int *matFaces = RL_CALLOC(model.meshCount, sizeof(int));
-
- // if no materials are present use all faces on one mesh
- if (materialCount > 0)
- {
- for (unsigned int fi = 0; fi < attrib.num_faces; fi++)
- {
- //tinyobj_vertex_index_t face = attrib.faces[fi];
- int idx = attrib.material_ids[fi];
- matFaces[idx]++;
- }
-
- }
- else
- {
- matFaces[0] = attrib.num_faces;
- }
-
- //--------------------------------------
- // Create the material meshes
-
- // Running counts/indexes for each material mesh as we are
- // building them at the same time
- int *vCount = RL_CALLOC(model.meshCount, sizeof(int));
- int *vtCount = RL_CALLOC(model.meshCount, sizeof(int));
- int *vnCount = RL_CALLOC(model.meshCount, sizeof(int));
- int *faceCount = RL_CALLOC(model.meshCount, sizeof(int));
-
- // Allocate space for each of the material meshes
- for (int mi = 0; mi < model.meshCount; mi++)
- {
- model.meshes[mi].vertexCount = matFaces[mi]*3;
- model.meshes[mi].triangleCount = matFaces[mi];
- model.meshes[mi].vertices = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float));
- model.meshes[mi].texcoords = (float *)RL_CALLOC(model.meshes[mi].vertexCount*2, sizeof(float));
- model.meshes[mi].normals = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float));
- model.meshMaterial[mi] = mi;
- }
-
- // Scan through the combined sub meshes and pick out each material mesh
- for (unsigned int af = 0; af < attrib.num_faces; af++)
- {
- int mm = attrib.material_ids[af]; // mesh material for this face
- if (mm == -1) { mm = 0; } // no material object..
-
- // Get indices for the face
- tinyobj_vertex_index_t idx0 = attrib.faces[3*af + 0];
- tinyobj_vertex_index_t idx1 = attrib.faces[3*af + 1];
- tinyobj_vertex_index_t idx2 = attrib.faces[3*af + 2];
-
- // Fill vertices buffer (float) using vertex index of the face
- for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount[mm] +=3;
-
- if (attrib.num_texcoords > 0)
- {
- // Fill texcoords buffer (float) using vertex index of the face
- // NOTE: Y-coordinate must be flipped upside-down to account for
- // raylib's upside down textures...
- model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx0.vt_idx*2 + 0];
- model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount[mm] += 2;
- model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx1.vt_idx*2 + 0];
- model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount[mm] += 2;
- model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx2.vt_idx*2 + 0];
- model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount[mm] += 2;
- }
-
- if (attrib.num_normals > 0)
- {
- // Fill normals buffer (float) using vertex index of the face
- for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount[mm] +=3;
- }
- }
-
- // Init model materials
- ProcessMaterialsOBJ(model.materials, materials, materialCount);
-
- tinyobj_attrib_free(&attrib);
- tinyobj_shapes_free(meshes, meshCount);
- tinyobj_materials_free(materials, materialCount);
-
- UnloadFileText(fileText);
-
- RL_FREE(matFaces);
- RL_FREE(vCount);
- RL_FREE(vtCount);
- RL_FREE(vnCount);
- RL_FREE(faceCount);
-
- if (CHDIR(currentDir) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir);
- }
- }
-
- return model;
-}
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_IQM)
-// Load IQM mesh data
-static Model LoadIQM(const char *fileName)
-{
- #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
- #define IQM_VERSION 2 // only IQM version 2 supported
-
- #define BONE_NAME_LENGTH 32 // BoneInfo name string length
- #define MESH_NAME_LENGTH 32 // Mesh name string length
- #define MATERIAL_NAME_LENGTH 32 // Material name string length
-
- unsigned int fileSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &fileSize);
- unsigned char *fileDataPtr = fileData;
-
- // IQM file structs
- //-----------------------------------------------------------------------------------
- typedef struct IQMHeader {
- char magic[16];
- unsigned int version;
- unsigned int filesize;
- unsigned int flags;
- unsigned int num_text, ofs_text;
- unsigned int num_meshes, ofs_meshes;
- unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
- unsigned int num_triangles, ofs_triangles, ofs_adjacency;
- unsigned int num_joints, ofs_joints;
- unsigned int num_poses, ofs_poses;
- unsigned int num_anims, ofs_anims;
- unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
- unsigned int num_comment, ofs_comment;
- unsigned int num_extensions, ofs_extensions;
- } IQMHeader;
-
- typedef struct IQMMesh {
- unsigned int name;
- unsigned int material;
- unsigned int first_vertex, num_vertexes;
- unsigned int first_triangle, num_triangles;
- } IQMMesh;
-
- typedef struct IQMTriangle {
- unsigned int vertex[3];
- } IQMTriangle;
-
- typedef struct IQMJoint {
- unsigned int name;
- int parent;
- float translate[3], rotate[4], scale[3];
- } IQMJoint;
-
- typedef struct IQMVertexArray {
- unsigned int type;
- unsigned int flags;
- unsigned int format;
- unsigned int size;
- unsigned int offset;
- } IQMVertexArray;
-
- // NOTE: Below IQM structures are not used but listed for reference
- /*
- typedef struct IQMAdjacency {
- unsigned int triangle[3];
- } IQMAdjacency;
-
- typedef struct IQMPose {
- int parent;
- unsigned int mask;
- float channeloffset[10];
- float channelscale[10];
- } IQMPose;
-
- typedef struct IQMAnim {
- unsigned int name;
- unsigned int first_frame, num_frames;
- float framerate;
- unsigned int flags;
- } IQMAnim;
-
- typedef struct IQMBounds {
- float bbmin[3], bbmax[3];
- float xyradius, radius;
- } IQMBounds;
- */
- //-----------------------------------------------------------------------------------
-
- // IQM vertex data types
- enum {
- IQM_POSITION = 0,
- IQM_TEXCOORD = 1,
- IQM_NORMAL = 2,
- IQM_TANGENT = 3, // NOTE: Tangents unused by default
- IQM_BLENDINDEXES = 4,
- IQM_BLENDWEIGHTS = 5,
- IQM_COLOR = 6,
- IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default
- };
-
- Model model = { 0 };
-
- IQMMesh *imesh = NULL;
- IQMTriangle *tri = NULL;
- IQMVertexArray *va = NULL;
- IQMJoint *ijoint = NULL;
-
- float *vertex = NULL;
- float *normal = NULL;
- float *text = NULL;
- char *blendi = NULL;
- unsigned char *blendw = NULL;
- unsigned char *color = NULL;
-
- // In case file can not be read, return an empty model
- if (fileDataPtr == NULL) return model;
-
- // Read IQM header
- IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
-
- if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
- return model;
- }
-
- if (iqmHeader->version != IQM_VERSION)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
- return model;
- }
-
- //fileDataPtr += sizeof(IQMHeader); // Move file data pointer
-
- // Meshes data processing
- imesh = RL_MALLOC(iqmHeader->num_meshes*sizeof(IQMMesh));
- //fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET);
- //fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile);
- memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh));
-
- model.meshCount = iqmHeader->num_meshes;
- model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
-
- model.materialCount = model.meshCount;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
-
- char name[MESH_NAME_LENGTH] = { 0 };
- char material[MATERIAL_NAME_LENGTH] = { 0 };
-
- for (int i = 0; i < model.meshCount; i++)
- {
- //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET);
- //fread(name, sizeof(char), MESH_NAME_LENGTH, iqmFile);
- memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char));
-
- //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET);
- //fread(material, sizeof(char), MATERIAL_NAME_LENGTH, iqmFile);
- memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char));
-
- model.materials[i] = LoadMaterialDefault();
-
- TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material);
-
- model.meshes[i].vertexCount = imesh[i].num_vertexes;
-
- model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions
- model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals
- model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords
-
- model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(unsigned char)); // Up-to 4 bones supported!
- model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
-
- model.meshes[i].triangleCount = imesh[i].num_triangles;
- model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
-
- // Animated verted data, what we actually process for rendering
- // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
- model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
- model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
- }
-
- // Triangles data processing
- tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle));
- //fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET);
- //fread(tri, sizeof(IQMTriangle), iqmHeader->num_triangles, iqmFile);
- memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle));
-
- for (int m = 0; m < model.meshCount; m++)
- {
- int tcounter = 0;
-
- for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
- {
- // IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order,
- // expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes
- // NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default
- model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
- model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
- model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
- tcounter += 3;
- }
- }
-
- // Vertex arrays data processing
- va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
- //fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET);
- //fread(va, sizeof(IQMVertexArray), iqmHeader->num_vertexarrays, iqmFile);
- memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
-
- for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++)
- {
- switch (va[i].type)
- {
- case IQM_POSITION:
- {
- vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
- memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
- {
- model.meshes[m].vertices[vCounter] = vertex[i];
- model.meshes[m].animVertices[vCounter] = vertex[i];
- vCounter++;
- }
- }
- } break;
- case IQM_NORMAL:
- {
- normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
- memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
- {
- model.meshes[m].normals[vCounter] = normal[i];
- model.meshes[m].animNormals[vCounter] = normal[i];
- vCounter++;
- }
- }
- } break;
- case IQM_TEXCOORD:
- {
- text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile);
- memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
- {
- model.meshes[m].texcoords[vCounter] = text[i];
- vCounter++;
- }
- }
- } break;
- case IQM_BLENDINDEXES:
- {
- blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile);
- memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int boneCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
- {
- model.meshes[m].boneIds[boneCounter] = blendi[i];
- boneCounter++;
- }
- }
- } break;
- case IQM_BLENDWEIGHTS:
- {
- blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
- memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int boneCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
- {
- model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
- boneCounter++;
- }
- }
- } break;
- case IQM_COLOR:
- {
- color = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
- memcpy(color, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- model.meshes[m].colors = RL_CALLOC(model.meshes[m].vertexCount*4, sizeof(unsigned char));
-
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
- {
- model.meshes[m].colors[vCounter] = color[i];
- vCounter++;
- }
- }
- } break;
- }
- }
-
- // Bones (joints) data processing
- ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
- //fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET);
- //fread(ijoint, sizeof(IQMJoint), iqmHeader->num_joints, iqmFile);
- memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
-
- model.boneCount = iqmHeader->num_joints;
- model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo));
- model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform));
-
- for (unsigned int i = 0; i < iqmHeader->num_joints; i++)
- {
- // Bones
- model.bones[i].parent = ijoint[i].parent;
- //fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET);
- //fread(model.bones[i].name, sizeof(char), BONE_NAME_LENGTH, iqmFile);
- memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char));
-
- // Bind pose (base pose)
- model.bindPose[i].translation.x = ijoint[i].translate[0];
- model.bindPose[i].translation.y = ijoint[i].translate[1];
- model.bindPose[i].translation.z = ijoint[i].translate[2];
-
- model.bindPose[i].rotation.x = ijoint[i].rotate[0];
- model.bindPose[i].rotation.y = ijoint[i].rotate[1];
- model.bindPose[i].rotation.z = ijoint[i].rotate[2];
- model.bindPose[i].rotation.w = ijoint[i].rotate[3];
-
- model.bindPose[i].scale.x = ijoint[i].scale[0];
- model.bindPose[i].scale.y = ijoint[i].scale[1];
- model.bindPose[i].scale.z = ijoint[i].scale[2];
- }
-
- BuildPoseFromParentJoints(model.bones, model.boneCount, model.bindPose);
-
- RL_FREE(fileData);
-
- RL_FREE(imesh);
- RL_FREE(tri);
- RL_FREE(va);
- RL_FREE(vertex);
- RL_FREE(normal);
- RL_FREE(text);
- RL_FREE(blendi);
- RL_FREE(blendw);
- RL_FREE(ijoint);
- RL_FREE(color);
-
- return model;
-}
-
-// Load IQM animation data
-static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, unsigned int *animCount)
-{
- #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
- #define IQM_VERSION 2 // only IQM version 2 supported
-
- unsigned int fileSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &fileSize);
- unsigned char *fileDataPtr = fileData;
-
- typedef struct IQMHeader {
- char magic[16];
- unsigned int version;
- unsigned int filesize;
- unsigned int flags;
- unsigned int num_text, ofs_text;
- unsigned int num_meshes, ofs_meshes;
- unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
- unsigned int num_triangles, ofs_triangles, ofs_adjacency;
- unsigned int num_joints, ofs_joints;
- unsigned int num_poses, ofs_poses;
- unsigned int num_anims, ofs_anims;
- unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
- unsigned int num_comment, ofs_comment;
- unsigned int num_extensions, ofs_extensions;
- } IQMHeader;
-
- typedef struct IQMJoint {
- unsigned int name;
- int parent;
- float translate[3], rotate[4], scale[3];
- } IQMJoint;
-
- typedef struct IQMPose {
- int parent;
- unsigned int mask;
- float channeloffset[10];
- float channelscale[10];
- } IQMPose;
-
- typedef struct IQMAnim {
- unsigned int name;
- unsigned int first_frame, num_frames;
- float framerate;
- unsigned int flags;
- } IQMAnim;
-
- // In case file can not be read, return an empty model
- if (fileDataPtr == NULL) return NULL;
-
- // Read IQM header
- IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
-
- if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
- return NULL;
- }
-
- if (iqmHeader->version != IQM_VERSION)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
- return NULL;
- }
-
- // Get bones data
- IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose));
- //fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET);
- //fread(poses, sizeof(IQMPose), iqmHeader->num_poses, iqmFile);
- memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose));
-
- // Get animations data
- *animCount = iqmHeader->num_anims;
- IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim));
- //fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET);
- //fread(anim, sizeof(IQMAnim), iqmHeader->num_anims, iqmFile);
- memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim));
-
- ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation));
-
- // frameposes
- unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
- //fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET);
- //fread(framedata, sizeof(unsigned short), iqmHeader->num_frames*iqmHeader->num_framechannels, iqmFile);
- memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
-
- // joints
- IQMJoint *joints = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
- memcpy(joints, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
-
- for (unsigned int a = 0; a < iqmHeader->num_anims; a++)
- {
- animations[a].frameCount = anim[a].num_frames;
- animations[a].boneCount = iqmHeader->num_poses;
- animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo));
- animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
- // animations[a].framerate = anim.framerate; // TODO: Use animation framerate data?
-
- for (unsigned int j = 0; j < iqmHeader->num_poses; j++)
- {
- // If animations and skeleton are in the same file, copy bone names to anim
- if (iqmHeader->num_joints > 0)
- memcpy(animations[a].bones[j].name, fileDataPtr + iqmHeader->ofs_text + joints[j].name, BONE_NAME_LENGTH*sizeof(char));
- else
- strcpy(animations[a].bones[j].name, "ANIMJOINTNAME"); // default bone name otherwise
- animations[a].bones[j].parent = poses[j].parent;
- }
-
- for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform));
-
- int dcounter = anim[a].first_frame*iqmHeader->num_framechannels;
-
- for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
- {
- for (unsigned int i = 0; i < iqmHeader->num_poses; i++)
- {
- animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
-
- if (poses[i].mask & 0x01)
- {
- animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
-
- if (poses[i].mask & 0x02)
- {
- animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
-
- if (poses[i].mask & 0x04)
- {
- animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
-
- if (poses[i].mask & 0x08)
- {
- animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
-
- if (poses[i].mask & 0x10)
- {
- animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
-
- if (poses[i].mask & 0x20)
- {
- animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
-
- if (poses[i].mask & 0x40)
- {
- animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
-
- if (poses[i].mask & 0x80)
- {
- animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
-
- if (poses[i].mask & 0x100)
- {
- animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
-
- if (poses[i].mask & 0x200)
- {
- animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
- }
- }
-
- // Build frameposes
- for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
- {
- for (int i = 0; i < animations[a].boneCount; i++)
- {
- if (animations[a].bones[i].parent >= 0)
- {
- animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
- animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
- animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
- animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
- }
- }
- }
- }
-
- RL_FREE(fileData);
-
- RL_FREE(joints);
- RL_FREE(framedata);
- RL_FREE(poses);
- RL_FREE(anim);
-
- return animations;
-}
-
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_GLTF)
-// Load image from different glTF provided methods (uri, path, buffer_view)
-static Image LoadImageFromCgltfImage(cgltf_image *cgltfImage, const char *texPath)
-{
- Image image = { 0 };
-
- if (cgltfImage->uri != NULL) // Check if image data is provided as an uri (base64 or path)
- {
- if ((strlen(cgltfImage->uri) > 5) &&
- (cgltfImage->uri[0] == 'd') &&
- (cgltfImage->uri[1] == 'a') &&
- (cgltfImage->uri[2] == 't') &&
- (cgltfImage->uri[3] == 'a') &&
- (cgltfImage->uri[4] == ':')) // Check if image is provided as base64 text data
- {
- // Data URI Format: data:<mediatype>;base64,<data>
-
- // Find the comma
- int i = 0;
- while ((cgltfImage->uri[i] != ',') && (cgltfImage->uri[i] != 0)) i++;
-
- if (cgltfImage->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image");
- else
- {
- int base64Size = (int)strlen(cgltfImage->uri + i + 1);
- int outSize = 3*(base64Size/4); // TODO: Consider padding (-numberOfPaddingCharacters)
- void *data = NULL;
-
- cgltf_options options = { 0 };
- cgltf_result result = cgltf_load_buffer_base64(&options, outSize, cgltfImage->uri + i + 1, &data);
-
- if (result == cgltf_result_success)
- {
- image = LoadImageFromMemory(".png", (unsigned char *)data, outSize);
- MemFree(data);
- }
- }
- }
- else // Check if image is provided as image path
- {
- image = LoadImage(TextFormat("%s/%s", texPath, cgltfImage->uri));
- }
- }
- else if (cgltfImage->buffer_view->buffer->data != NULL) // Check if image is provided as data buffer
- {
- unsigned char *data = RL_MALLOC(cgltfImage->buffer_view->size);
- int offset = (int)cgltfImage->buffer_view->offset;
- int stride = (int)cgltfImage->buffer_view->stride? (int)cgltfImage->buffer_view->stride : 1;
-
- // Copy buffer data to memory for loading
- for (unsigned int i = 0; i < cgltfImage->buffer_view->size; i++)
- {
- data[i] = ((unsigned char *)cgltfImage->buffer_view->buffer->data)[offset];
- offset += stride;
- }
-
- // Check mime_type for image: (cgltfImage->mime_type == "image/png")
- // NOTE: Detected that some models define mime_type as "image\\/png"
- if ((strcmp(cgltfImage->mime_type, "image\\/png") == 0) ||
- (strcmp(cgltfImage->mime_type, "image/png") == 0)) image = LoadImageFromMemory(".png", data, (int)cgltfImage->buffer_view->size);
- else if ((strcmp(cgltfImage->mime_type, "image\\/jpeg") == 0) ||
- (strcmp(cgltfImage->mime_type, "image/jpeg") == 0)) image = LoadImageFromMemory(".jpg", data, (int)cgltfImage->buffer_view->size);
- else TRACELOG(LOG_WARNING, "MODEL: glTF image data MIME type not recognized", TextFormat("%s/%s", texPath, cgltfImage->uri));
-
- RL_FREE(data);
- }
-
- return image;
-}
-
-// Load bone info from GLTF skin data
-static BoneInfo *LoadBoneInfoGLTF(cgltf_skin skin, int *boneCount)
-{
- *boneCount = (int)skin.joints_count;
- BoneInfo *bones = RL_MALLOC(skin.joints_count*sizeof(BoneInfo));
-
- for (unsigned int i = 0; i < skin.joints_count; i++)
- {
- cgltf_node node = *skin.joints[i];
- strncpy(bones[i].name, node.name, sizeof(bones[i].name));
-
- // Find parent bone index
- unsigned int parentIndex = -1;
-
- for (unsigned int j = 0; j < skin.joints_count; j++)
- {
- if (skin.joints[j] == node.parent)
- {
- parentIndex = j;
- break;
- }
- }
-
- bones[i].parent = parentIndex;
- }
-
- return bones;
-}
-
-// Load glTF file into model struct, .gltf and .glb supported
-static Model LoadGLTF(const char *fileName)
-{
- /*********************************************************************************************
-
- Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend)
- Reviewed by Ramon Santamaria (@raysan5)
-
- FEATURES:
- - Supports .gltf and .glb files
- - Supports embedded (base64) or external textures
- - Supports PBR metallic/roughness flow, loads material textures, values and colors
- PBR specular/glossiness flow and extended texture flows not supported
- - Supports multiple meshes per model (every primitives is loaded as a separate mesh)
- - Supports basic animations
-
- RESTRICTIONS:
- - Only triangle meshes supported
- - Vertex attibute types and formats supported:
- > Vertices (position): vec3: float
- > Normals: vec3: float
- > Texcoords: vec2: float
- > Colors: vec4: u8, u16, f32 (normalized)
- > Indices: u16, u32 (truncated to u16)
- - Node hierarchies or transforms not supported
-
- ***********************************************************************************************/
-
- // Macro to simplify attributes loading code
- #define LOAD_ATTRIBUTE(accesor, numComp, dataType, dstPtr) \
- { \
- int n = 0; \
- dataType *buffer = (dataType *)accesor->buffer_view->buffer->data + accesor->buffer_view->offset/sizeof(dataType) + accesor->offset/sizeof(dataType); \
- for (unsigned int k = 0; k < accesor->count; k++) \
- {\
- for (int l = 0; l < numComp; l++) \
- {\
- dstPtr[numComp*k + l] = buffer[n + l];\
- }\
- n += (int)(accesor->stride/sizeof(dataType));\
- }\
- }
-
- Model model = { 0 };
-
- // glTF file loading
- unsigned int dataSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &dataSize);
-
- if (fileData == NULL) return model;
-
- // glTF data loading
- cgltf_options options = { 0 };
- cgltf_data *data = NULL;
- cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
-
- if (result == cgltf_result_success)
- {
- if (data->file_type == cgltf_file_type_glb) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glb) loaded successfully", fileName);
- else if (data->file_type == cgltf_file_type_gltf) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glTF) loaded successfully", fileName);
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Model format not recognized", fileName);
-
- TRACELOG(LOG_INFO, " > Meshes count: %i", data->meshes_count);
- TRACELOG(LOG_INFO, " > Materials count: %i (+1 default)", data->materials_count);
- TRACELOG(LOG_DEBUG, " > Buffers count: %i", data->buffers_count);
- TRACELOG(LOG_DEBUG, " > Images count: %i", data->images_count);
- TRACELOG(LOG_DEBUG, " > Textures count: %i", data->textures_count);
-
- // Force reading data buffers (fills buffer_view->buffer->data)
- // NOTE: If an uri is defined to base64 data or external path, it's automatically loaded
- result = cgltf_load_buffers(&options, data, fileName);
- if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName);
-
- int primitivesCount = 0;
- // NOTE: We will load every primitive in the glTF as a separate raylib mesh
- for (unsigned int i = 0; i < data->meshes_count; i++) primitivesCount += (int)data->meshes[i].primitives_count;
-
- // Load our model data: meshes and materials
- model.meshCount = primitivesCount;
- model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
-
- // NOTE: We keep an extra slot for default material, in case some mesh requires it
- model.materialCount = (int)data->materials_count + 1;
- model.materials = RL_CALLOC(model.materialCount, sizeof(Material));
- model.materials[0] = LoadMaterialDefault(); // Load default material (index: 0)
-
- // Load mesh-material indices, by default all meshes are mapped to material index: 0
- model.meshMaterial = RL_CALLOC(model.meshCount, sizeof(int));
-
- // Load materials data
- //----------------------------------------------------------------------------------------------------
- for (unsigned int i = 0, j = 1; i < data->materials_count; i++, j++)
- {
- model.materials[j] = LoadMaterialDefault();
- const char *texPath = GetDirectoryPath(fileName);
-
- // Check glTF material flow: PBR metallic/roughness flow
- // NOTE: Alternatively, materials can follow PBR specular/glossiness flow
- if (data->materials[i].has_pbr_metallic_roughness)
- {
- // Load base color texture (albedo)
- if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
- {
- Image imAlbedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath);
- if (imAlbedo.data != NULL)
- {
- model.materials[j].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(imAlbedo);
- UnloadImage(imAlbedo);
- }
- }
- // Load base color factor (tint)
- model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255);
- model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255);
- model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255);
- model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255);
-
- // Load metallic/roughness texture
- if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
- {
- Image imMetallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath);
- if (imMetallicRoughness.data != NULL)
- {
- model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(imMetallicRoughness);
- UnloadImage(imMetallicRoughness);
- }
-
- // Load metallic/roughness material properties
- float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
- model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].value = roughness;
-
- float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
- model.materials[j].maps[MATERIAL_MAP_METALNESS].value = metallic;
- }
-
- // Load normal texture
- if (data->materials[i].normal_texture.texture)
- {
- Image imNormal = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath);
- if (imNormal.data != NULL)
- {
- model.materials[j].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(imNormal);
- UnloadImage(imNormal);
- }
- }
-
- // Load ambient occlusion texture
- if (data->materials[i].occlusion_texture.texture)
- {
- Image imOcclusion = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath);
- if (imOcclusion.data != NULL)
- {
- model.materials[j].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(imOcclusion);
- UnloadImage(imOcclusion);
- }
- }
-
- // Load emissive texture
- if (data->materials[i].emissive_texture.texture)
- {
- Image imEmissive = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath);
- if (imEmissive.data != NULL)
- {
- model.materials[j].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(imEmissive);
- UnloadImage(imEmissive);
- }
-
- // Load emissive color factor
- model.materials[j].maps[MATERIAL_MAP_EMISSION].color.r = (unsigned char)(data->materials[i].emissive_factor[0]*255);
- model.materials[j].maps[MATERIAL_MAP_EMISSION].color.g = (unsigned char)(data->materials[i].emissive_factor[1]*255);
- model.materials[j].maps[MATERIAL_MAP_EMISSION].color.b = (unsigned char)(data->materials[i].emissive_factor[2]*255);
- model.materials[j].maps[MATERIAL_MAP_EMISSION].color.a = 255;
- }
- }
-
- // Other possible materials not supported by raylib pipeline:
- // has_clearcoat, has_transmission, has_volume, has_ior, has specular, has_sheen
- }
-
- // Load meshes data
- //----------------------------------------------------------------------------------------------------
- for (unsigned int i = 0, meshIndex = 0; i < data->meshes_count; i++)
- {
- // NOTE: meshIndex accumulates primitives
-
- for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++)
- {
- // NOTE: We only support primitives defined by triangles
- // Other alternatives: points, lines, line_strip, triangle_strip
- if (data->meshes[i].primitives[p].type != cgltf_primitive_type_triangles) continue;
-
- // NOTE: Attributes data could be provided in several data formats (8, 8u, 16u, 32...),
- // Only some formats for each attribute type are supported, read info at the top of this function!
-
- for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++)
- {
- // Check the different attributes for every primitive
- if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position) // POSITION
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- // WARNING: SPECS: POSITION accessor MUST have its min and max properties defined.
-
- if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec3))
- {
- // Init raylib mesh vertices to copy glTF attribute data
- model.meshes[meshIndex].vertexCount = (int)attribute->count;
- model.meshes[meshIndex].vertices = RL_MALLOC(attribute->count*3*sizeof(float));
-
- // Load 3 components of float data type into mesh.vertices
- LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].vertices)
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Vertices attribute data format not supported, use vec3 float", fileName);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal) // NORMAL
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec3))
- {
- // Init raylib mesh normals to copy glTF attribute data
- model.meshes[meshIndex].normals = RL_MALLOC(attribute->count*3*sizeof(float));
-
- // Load 3 components of float data type into mesh.normals
- LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].normals)
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Normal attribute data format not supported, use vec3 float", fileName);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_tangent) // TANGENT
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec4))
- {
- // Init raylib mesh tangent to copy glTF attribute data
- model.meshes[meshIndex].tangents = RL_MALLOC(attribute->count*4*sizeof(float));
-
- // Load 4 components of float data type into mesh.tangents
- LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].tangents)
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Tangent attribute data format not supported, use vec4 float", fileName);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord) // TEXCOORD_0
- {
- // TODO: Support additional texture coordinates: TEXCOORD_1 -> mesh.texcoords2
-
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec2))
- {
- // Init raylib mesh texcoords to copy glTF attribute data
- model.meshes[meshIndex].texcoords = RL_MALLOC(attribute->count*2*sizeof(float));
-
- // Load 3 components of float data type into mesh.texcoords
- LOAD_ATTRIBUTE(attribute, 2, float, model.meshes[meshIndex].texcoords)
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported, use vec2 float", fileName);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_color) // COLOR_0
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- // WARNING: SPECS: All components of each COLOR_n accessor element MUST be clamped to [0.0, 1.0] range.
-
- if ((attribute->component_type == cgltf_component_type_r_8u) && (attribute->type == cgltf_type_vec4))
- {
- // Init raylib mesh color to copy glTF attribute data
- model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
-
- // Load 4 components of unsigned char data type into mesh.colors
- LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].colors)
- }
- else if ((attribute->component_type == cgltf_component_type_r_16u) && (attribute->type == cgltf_type_vec4))
- {
- // Init raylib mesh color to copy glTF attribute data
- model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
-
- // Load data into a temp buffer to be converted to raylib data type
- unsigned short *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned short));
- LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
-
- // Convert data to raylib color data type (4 bytes)
- for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[c]/65535.0f)*255.0f);
-
- RL_FREE(temp);
- }
- else if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec4))
- {
- // Init raylib mesh color to copy glTF attribute data
- model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char));
-
- // Load data into a temp buffer to be converted to raylib data type
- float *temp = RL_MALLOC(attribute->count*4*sizeof(float));
- LOAD_ATTRIBUTE(attribute, 4, float, temp);
-
- // Convert data to raylib color data type (4 bytes), we expect the color data normalized
- for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(temp[c]*255.0f);
-
- RL_FREE(temp);
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
- }
-
- // NOTE: Attributes related to animations are processed separately
- }
-
- // Load primitive indices data (if provided)
- if (data->meshes[i].primitives[p].indices != NULL)
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].indices;
-
- model.meshes[meshIndex].triangleCount = (int)attribute->count/3;
-
- if (attribute->component_type == cgltf_component_type_r_16u)
- {
- // Init raylib mesh indices to copy glTF attribute data
- model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short));
-
- // Load unsigned short data type into mesh.indices
- LOAD_ATTRIBUTE(attribute, 1, unsigned short, model.meshes[meshIndex].indices)
- }
- else if (attribute->component_type == cgltf_component_type_r_32u)
- {
- // Init raylib mesh indices to copy glTF attribute data
- model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short));
-
- // Load data into a temp buffer to be converted to raylib data type
- unsigned int *temp = RL_MALLOC(attribute->count*sizeof(unsigned int));
- LOAD_ATTRIBUTE(attribute, 1, unsigned int, temp);
-
- // Convert data to raylib indices data type (unsigned short)
- for (unsigned int d = 0; d < attribute->count; d++) model.meshes[meshIndex].indices[d] = (unsigned short)temp[d];
-
- TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data converted from u32 to u16, possible loss of data", fileName);
-
- RL_FREE(temp);
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data format not supported, use u16", fileName);
- }
- else model.meshes[meshIndex].triangleCount = model.meshes[meshIndex].vertexCount/3; // Unindexed mesh
-
- // Assign to the primitive mesh the corresponding material index
- // NOTE: If no material defined, mesh uses the already assigned default material (index: 0)
- for (unsigned int m = 0; m < data->materials_count; m++)
- {
- // The primitive actually keeps the pointer to the corresponding material,
- // raylib instead assigns to the mesh the by its index, as loaded in model.materials array
- // To get the index, we check if material pointers match, and we assign the corresponding index,
- // skipping index 0, the default material
- if (&data->materials[m] == data->meshes[i].primitives[p].material)
- {
- model.meshMaterial[meshIndex] = m + 1;
- break;
- }
- }
-
- meshIndex++; // Move to next mesh
- }
- }
-
- // Load glTF meshes animation data
- // REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skins
- // REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skinned-mesh-attributes
- //
- // LIMITATIONS:
- // - Only supports 1 armature per file, and skips loading it if there are multiple armatures
- // - Only supports linear interpolation (default method in Blender when checked "Always Sample Animations" when exporting a GLTF file)
- // - Only supports translation/rotation/scale animation channel.path, weights not considered (i.e. morph targets)
- //----------------------------------------------------------------------------------------------------
- if (data->skins_count == 1)
- {
- cgltf_skin skin = data->skins[0];
- model.bones = LoadBoneInfoGLTF(skin, &model.boneCount);
- model.bindPose = RL_MALLOC(model.boneCount*sizeof(Transform));
-
- for (int i = 0; i < model.boneCount; i++)
- {
- cgltf_node node = *skin.joints[i];
- model.bindPose[i].translation.x = node.translation[0];
- model.bindPose[i].translation.y = node.translation[1];
- model.bindPose[i].translation.z = node.translation[2];
-
- model.bindPose[i].rotation.x = node.rotation[0];
- model.bindPose[i].rotation.y = node.rotation[1];
- model.bindPose[i].rotation.z = node.rotation[2];
- model.bindPose[i].rotation.w = node.rotation[3];
-
- model.bindPose[i].scale.x = node.scale[0];
- model.bindPose[i].scale.y = node.scale[1];
- model.bindPose[i].scale.z = node.scale[2];
- }
-
- BuildPoseFromParentJoints(model.bones, model.boneCount, model.bindPose);
- }
- else if (data->skins_count > 1)
- {
- TRACELOG(LOG_ERROR, "MODEL: [%s] can only load one skin (armature) per model, but gltf skins_count == %i", fileName, data->skins_count);
- }
-
- for (unsigned int i = 0, meshIndex = 0; i < data->meshes_count; i++)
- {
- for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++)
- {
- // NOTE: We only support primitives defined by triangles
- if (data->meshes[i].primitives[p].type != cgltf_primitive_type_triangles) continue;
-
- for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++)
- {
- // NOTE: JOINTS_1 + WEIGHT_1 will be used for +4 joints influencing a vertex -> Not supported by raylib
-
- if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_joints) // JOINTS_n (vec4: 4 bones max per vertex / u8, u16)
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- if ((attribute->component_type == cgltf_component_type_r_8u) && (attribute->type == cgltf_type_vec4))
- {
- // Init raylib mesh bone ids to copy glTF attribute data
- model.meshes[meshIndex].boneIds = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char));
-
- // Load 4 components of unsigned char data type into mesh.boneIds
- // for cgltf_attribute_type_joints we have:
- // - data.meshes[0] (256 vertices)
- // - 256 values, provided as cgltf_type_vec4 of bytes (4 byte per joint, stride 4)
- LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].boneIds)
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported, use vec4 u8", fileName);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_weights) // WEIGHTS_n (vec4 / u8, u16, f32)
- {
- cgltf_accessor *attribute = data->meshes[i].primitives[p].attributes[j].data;
-
- if ((attribute->component_type == cgltf_component_type_r_32f) && (attribute->type == cgltf_type_vec4))
- {
- // Init raylib mesh bone weight to copy glTF attribute data
- model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
-
- // Load 4 components of float data type into mesh.boneWeights
- // for cgltf_attribute_type_weights we have:
- // - data.meshes[0] (256 vertices)
- // - 256 values, provided as cgltf_type_vec4 of float (4 byte per joint, stride 16)
- LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].boneWeights)
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName);
- }
- }
-
- // Animated vertex data
- model.meshes[meshIndex].animVertices = RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float));
- memcpy(model.meshes[meshIndex].animVertices, model.meshes[meshIndex].vertices, model.meshes[meshIndex].vertexCount*3*sizeof(float));
- model.meshes[meshIndex].animNormals = RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float));
- if (model.meshes[meshIndex].normals != NULL) {
- memcpy(model.meshes[meshIndex].animNormals, model.meshes[meshIndex].normals, model.meshes[meshIndex].vertexCount*3*sizeof(float));
- }
-
- meshIndex++; // Move to next mesh
- }
-
- }
-
- // Free all cgltf loaded data
- cgltf_free(data);
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
-
- // WARNING: cgltf requires the file pointer available while reading data
- UnloadFileData(fileData);
-
- return model;
-}
-
-// Get interpolated pose for bone sampler at a specific time. Returns true on success.
-static bool GetPoseAtTimeGLTF(cgltf_accessor *input, cgltf_accessor *output, float time, void *data)
-{
- // Input and output should have the same count
- float tstart = 0.0f;
- float tend = 0.0f;
- int keyframe = 0; // Defaults to first pose
-
- for (int i = 0; i < input->count - 1; i++)
- {
- cgltf_bool r1 = cgltf_accessor_read_float(input, i, &tstart, 1);
- if (!r1) return false;
-
- cgltf_bool r2 = cgltf_accessor_read_float(input, i + 1, &tend, 1);
- if (!r2) return false;
-
- if ((tstart <= time) && (time < tend))
- {
- keyframe = i;
- break;
- }
- }
-
- float t = (time - tstart)/(tend - tstart);
- t = (t < 0.0f)? 0.0f : t;
- t = (t > 1.0f)? 1.0f : t;
-
- if (output->component_type != cgltf_component_type_r_32f) return false;
-
- if (output->type == cgltf_type_vec3)
- {
- float tmp[3] = { 0.0f };
- cgltf_accessor_read_float(output, keyframe, tmp, 3);
- Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
- cgltf_accessor_read_float(output, keyframe+1, tmp, 3);
- Vector3 v2 = {tmp[0], tmp[1], tmp[2]};
- Vector3 *r = data;
- *r = Vector3Lerp(v1, v2, t);
- }
- else if (output->type == cgltf_type_vec4)
- {
- float tmp[4] = { 0.0f };
- cgltf_accessor_read_float(output, keyframe, tmp, 4);
- Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
- cgltf_accessor_read_float(output, keyframe+1, tmp, 4);
- Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]};
- Vector4 *r = data;
-
- // Only v4 is for rotations, so we know it's a quat
- *r = QuaternionSlerp(v1, v2, t);
- }
-
- return true;
-}
-
-#define GLTF_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms)
-
-static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, unsigned int *animCount)
-{
- // glTF file loading
- unsigned int dataSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &dataSize);
-
- ModelAnimation *animations = NULL;
-
- // glTF data loading
- cgltf_options options = { 0 };
- cgltf_data *data = NULL;
- cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
-
- if (result != cgltf_result_success)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
- *animCount = 0;
- return NULL;
- }
-
- result = cgltf_load_buffers(&options, data, fileName);
- if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load animation buffers", fileName);
-
- if (result == cgltf_result_success)
- {
- if (data->skins_count == 1)
- {
- cgltf_skin skin = data->skins[0];
- *animCount = (int)data->animations_count;
- animations = RL_MALLOC(data->animations_count*sizeof(ModelAnimation));
-
- for (unsigned int i = 0; i < data->animations_count; i++)
- {
- animations[i].bones = LoadBoneInfoGLTF(skin, &animations[i].boneCount);
-
- cgltf_animation animData = data->animations[i];
-
- struct Channels {
- cgltf_animation_channel *translate;
- cgltf_animation_channel *rotate;
- cgltf_animation_channel *scale;
- };
-
- struct Channels *boneChannels = RL_CALLOC(animations[i].boneCount, sizeof(struct Channels));
- float animDuration = 0.0f;
-
- for (unsigned int j = 0; j < animData.channels_count; j++)
- {
- cgltf_animation_channel channel = animData.channels[j];
- int boneIndex = -1;
-
- for (unsigned int k = 0; k < skin.joints_count; k++)
- {
- if (animData.channels[j].target_node == skin.joints[k])
- {
- boneIndex = k;
- break;
- }
- }
-
- if (boneIndex == -1)
- {
- // Animation channel for a node not in the armature
- continue;
- }
-
- if (animData.channels[j].sampler->interpolation == cgltf_interpolation_type_linear)
- {
- if (channel.target_path == cgltf_animation_path_type_translation)
- {
- boneChannels[boneIndex].translate = &animData.channels[j];
- }
- else if (channel.target_path == cgltf_animation_path_type_rotation)
- {
- boneChannels[boneIndex].rotate = &animData.channels[j];
- }
- else if (channel.target_path == cgltf_animation_path_type_scale)
- {
- boneChannels[boneIndex].scale = &animData.channels[j];
- }
- else
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Unsupported target_path on channel %d's sampler for animation %d. Skipping.", fileName, j, i);
- }
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Only linear interpolation curves are supported for GLTF animation.", fileName);
-
- float t = 0.0f;
- cgltf_bool r = cgltf_accessor_read_float(channel.sampler->input, channel.sampler->input->count - 1, &t, 1);
-
- if (!r)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load input time", fileName);
- continue;
- }
-
- animDuration = (t > animDuration)? t : animDuration;
- }
-
- strncpy(animations[i].name, animData.name, sizeof(animations[i].name));
- animations[i].name[sizeof(animations[i].name) - 1] = '\0';
-
- animations[i].frameCount = (int)(animDuration*1000.0f/GLTF_ANIMDELAY);
- animations[i].framePoses = RL_MALLOC(animations[i].frameCount*sizeof(Transform *));
-
- for (int j = 0; j < animations[i].frameCount; j++)
- {
- animations[i].framePoses[j] = RL_MALLOC(animations[i].boneCount*sizeof(Transform));
- float time = ((float) j*GLTF_ANIMDELAY)/1000.0f;
-
- for (int k = 0; k < animations[i].boneCount; k++)
- {
- Vector3 translation = {0, 0, 0};
- Quaternion rotation = {0, 0, 0, 1};
- Vector3 scale = {1, 1, 1};
-
- if (boneChannels[k].translate)
- {
- if (!GetPoseAtTimeGLTF(boneChannels[k].translate->sampler->input, boneChannels[k].translate->sampler->output, time, &translation))
- {
- TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load translate pose data for bone %s", fileName, animations[i].bones[k].name);
- }
- }
-
- if (boneChannels[k].rotate)
- {
- if (!GetPoseAtTimeGLTF(boneChannels[k].rotate->sampler->input, boneChannels[k].rotate->sampler->output, time, &rotation))
- {
- TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load rotate pose data for bone %s", fileName, animations[i].bones[k].name);
- }
- }
-
- if (boneChannels[k].scale)
- {
- if (!GetPoseAtTimeGLTF(boneChannels[k].scale->sampler->input, boneChannels[k].scale->sampler->output, time, &scale))
- {
- TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load scale pose data for bone %s", fileName, animations[i].bones[k].name);
- }
- }
-
- animations[i].framePoses[j][k] = (Transform){
- .translation = translation,
- .rotation = rotation,
- .scale = scale
- };
- }
-
- BuildPoseFromParentJoints(animations[i].bones, animations[i].boneCount, animations[i].framePoses[j]);
- }
-
- TRACELOG(LOG_INFO, "MODEL: [%s] Loaded animation: %s (%d frames, %fs)", fileName, animData.name, animations[i].frameCount, animDuration);
- RL_FREE(boneChannels);
- }
- }
- else TRACELOG(LOG_ERROR, "MODEL: [%s] expected exactly one skin to load animation data from, but found %i", fileName, data->skins_count);
-
- cgltf_free(data);
- }
- UnloadFileData(fileData);
- return animations;
-}
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_VOX)
-// Load VOX (MagicaVoxel) mesh data
-static Model LoadVOX(const char *fileName)
-{
- Model model = { 0 };
-
- int nbvertices = 0;
- int meshescount = 0;
- unsigned int fileSize = 0;
- unsigned char *fileData = NULL;
-
- // Read vox file into buffer
- fileData = LoadFileData(fileName, &fileSize);
- if (fileData == 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX file", fileName);
- return model;
- }
-
- // Read and build voxarray description
- VoxArray3D voxarray = { 0 };
- int ret = Vox_LoadFromMemory(fileData, fileSize, &voxarray);
-
- if (ret != VOX_SUCCESS)
- {
- // Error
- UnloadFileData(fileData);
-
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX data", fileName);
- return model;
- }
- else
- {
- // Success: Compute meshes count
- nbvertices = voxarray.vertices.used;
- meshescount = 1 + (nbvertices/65536);
-
- TRACELOG(LOG_INFO, "MODEL: [%s] VOX data loaded successfully : %i vertices/%i meshes", fileName, nbvertices, meshescount);
- }
-
- // Build models from meshes
- model.transform = MatrixIdentity();
-
- model.meshCount = meshescount;
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
-
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
-
- model.materialCount = 1;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.materials[0] = LoadMaterialDefault();
-
- // Init model meshes
- int verticesRemain = voxarray.vertices.used;
- int verticesMax = 65532; // 5461 voxels x 12 vertices per voxel -> 65532 (must be inf 65536)
-
- // 6*4 = 12 vertices per voxel
- Vector3 *pvertices = (Vector3 *)voxarray.vertices.array;
- Color *pcolors = (Color *)voxarray.colors.array;
-
- unsigned short *pindices = voxarray.indices.array; // 5461*6*6 = 196596 indices max per mesh
-
- int size = 0;
-
- for (int i = 0; i < meshescount; i++)
- {
- Mesh *pmesh = &model.meshes[i];
- memset(pmesh, 0, sizeof(Mesh));
-
- // Copy vertices
- pmesh->vertexCount = (int)fmin(verticesMax, verticesRemain);
-
- size = pmesh->vertexCount*sizeof(float)*3;
- pmesh->vertices = RL_MALLOC(size);
- memcpy(pmesh->vertices, pvertices, size);
-
- // Copy indices
- size = voxarray.indices.used*sizeof(unsigned short);
- pmesh->indices = RL_MALLOC(size);
- memcpy(pmesh->indices, pindices, size);
-
- pmesh->triangleCount = (pmesh->vertexCount/4)*2;
-
- // Copy colors
- size = pmesh->vertexCount*sizeof(Color);
- pmesh->colors = RL_MALLOC(size);
- memcpy(pmesh->colors, pcolors, size);
-
- // First material index
- model.meshMaterial[i] = 0;
-
- verticesRemain -= verticesMax;
- pvertices += verticesMax;
- pcolors += verticesMax;
- }
-
- // Free buffers
- Vox_FreeArrays(&voxarray);
- UnloadFileData(fileData);
-
- return model;
-}
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_M3D)
-// Hook LoadFileData()/UnloadFileData() calls to M3D loaders
-unsigned char *m3d_loaderhook(char *fn, unsigned int *len) { return LoadFileData((const char *)fn, len); }
-void m3d_freehook(void *data) { UnloadFileData((unsigned char *)data); }
-
-// Load M3D mesh data
-static Model LoadM3D(const char *fileName)
-{
- Model model = { 0 };
-
- m3d_t *m3d = NULL;
- m3dp_t *prop = NULL;
- unsigned int bytesRead = 0;
- unsigned char *fileData = LoadFileData(fileName, &bytesRead);
- int i, j, k, l, n, mi = -2;
-
- if (fileData != NULL)
- {
- m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL);
-
- if (!m3d || M3D_ERR_ISFATAL(m3d->errcode))
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d ? m3d->errcode : -2);
- if (m3d) m3d_free(m3d);
- UnloadFileData(fileData);
- return model;
- }
- else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i faces/%i materials", fileName, m3d->numface, m3d->nummaterial);
-
- // no face? this is probably just a material library
- if (!m3d->numface)
- {
- m3d_free(m3d);
- UnloadFileData(fileData);
- return model;
- }
-
- if (m3d->nummaterial > 0)
- {
- model.meshCount = model.materialCount = m3d->nummaterial;
- TRACELOG(LOG_INFO, "MODEL: model has %i material meshes", model.materialCount);
- }
- else
- {
- model.meshCount = model.materialCount = 1;
- TRACELOG(LOG_INFO, "MODEL: No materials, putting all meshes in a default material");
- }
-
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
- model.materials = (Material *)RL_CALLOC(model.materialCount + 1, sizeof(Material));
-
- // Map no material to index 0 with default shader, everything else materialid + 1
- model.materials[0] = LoadMaterialDefault();
-
- for (i = l = 0, k = -1; i < (int)m3d->numface; i++, l++)
- {
- // Materials are grouped together
- if (mi != m3d->face[i].materialid)
- {
- // there should be only one material switch per material kind, but be bulletproof for non-optimal model files
- if (k + 1 >= model.meshCount)
- {
- model.meshCount++;
- model.meshes = (Mesh *)RL_REALLOC(model.meshes, model.meshCount*sizeof(Mesh));
- memset(&model.meshes[model.meshCount - 1], 0, sizeof(Mesh));
- model.meshMaterial = (int *)RL_REALLOC(model.meshMaterial, model.meshCount*sizeof(int));
- }
-
- k++;
- mi = m3d->face[i].materialid;
-
- for (j = i, l = 0; (j < (int)m3d->numface) && (mi == m3d->face[j].materialid); j++, l++);
-
- model.meshes[k].vertexCount = l*3;
- model.meshes[k].triangleCount = l;
- model.meshes[k].vertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
- model.meshes[k].texcoords = (float *)RL_CALLOC(model.meshes[k].vertexCount*2, sizeof(float));
- model.meshes[k].normals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
-
- // If no map is provided, we allocate storage for vertex colors
- // M3D specs only consider vertex colors if no material is provided
- if (mi != M3D_UNDEF) model.meshes[k].colors = RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char));
-
- if (m3d->numbone && m3d->numskin)
- {
- model.meshes[k].boneIds = (unsigned char *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char));
- model.meshes[k].boneWeights = (float *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(float));
- model.meshes[k].animVertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
- model.meshes[k].animNormals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
- }
-
- model.meshMaterial[k] = mi + 1;
- l = 0;
- }
-
- // Process meshes per material, add triangles
- model.meshes[k].vertices[l*9 + 0] = m3d->vertex[m3d->face[i].vertex[0]].x*m3d->scale;
- model.meshes[k].vertices[l*9 + 1] = m3d->vertex[m3d->face[i].vertex[0]].y*m3d->scale;
- model.meshes[k].vertices[l*9 + 2] = m3d->vertex[m3d->face[i].vertex[0]].z*m3d->scale;
- model.meshes[k].vertices[l*9 + 3] = m3d->vertex[m3d->face[i].vertex[1]].x*m3d->scale;
- model.meshes[k].vertices[l*9 + 4] = m3d->vertex[m3d->face[i].vertex[1]].y*m3d->scale;
- model.meshes[k].vertices[l*9 + 5] = m3d->vertex[m3d->face[i].vertex[1]].z*m3d->scale;
- model.meshes[k].vertices[l*9 + 6] = m3d->vertex[m3d->face[i].vertex[2]].x*m3d->scale;
- model.meshes[k].vertices[l*9 + 7] = m3d->vertex[m3d->face[i].vertex[2]].y*m3d->scale;
- model.meshes[k].vertices[l*9 + 8] = m3d->vertex[m3d->face[i].vertex[2]].z*m3d->scale;
-
- // without vertex color (full transparency), we use the default color
- if (model.meshes[k].colors != NULL)
- {
- if (m3d->vertex[m3d->face[i].vertex[0]].color & 0xFF000000)
- memcpy(&model.meshes[k].colors[l*12 + 0], &m3d->vertex[m3d->face[i].vertex[0]].color, 4);
- if (m3d->vertex[m3d->face[i].vertex[1]].color & 0xFF000000)
- memcpy(&model.meshes[k].colors[l*12 + 4], &m3d->vertex[m3d->face[i].vertex[1]].color, 4);
- if (m3d->vertex[m3d->face[i].vertex[2]].color & 0xFF000000)
- memcpy(&model.meshes[k].colors[l*12 + 8], &m3d->vertex[m3d->face[i].vertex[2]].color, 4);
- }
-
- if (m3d->face[i].texcoord[0] != M3D_UNDEF)
- {
- model.meshes[k].texcoords[l*6 + 0] = m3d->tmap[m3d->face[i].texcoord[0]].u;
- model.meshes[k].texcoords[l*6 + 1] = 1.0f - m3d->tmap[m3d->face[i].texcoord[0]].v;
- model.meshes[k].texcoords[l*6 + 2] = m3d->tmap[m3d->face[i].texcoord[1]].u;
- model.meshes[k].texcoords[l*6 + 3] = 1.0f - m3d->tmap[m3d->face[i].texcoord[1]].v;
- model.meshes[k].texcoords[l*6 + 4] = m3d->tmap[m3d->face[i].texcoord[2]].u;
- model.meshes[k].texcoords[l*6 + 5] = 1.0f - m3d->tmap[m3d->face[i].texcoord[2]].v;
- }
-
- if (m3d->face[i].normal[0] != M3D_UNDEF)
- {
- model.meshes[k].normals[l*9 + 0] = m3d->vertex[m3d->face[i].normal[0]].x;
- model.meshes[k].normals[l*9 + 1] = m3d->vertex[m3d->face[i].normal[0]].y;
- model.meshes[k].normals[l*9 + 2] = m3d->vertex[m3d->face[i].normal[0]].z;
- model.meshes[k].normals[l*9 + 3] = m3d->vertex[m3d->face[i].normal[1]].x;
- model.meshes[k].normals[l*9 + 4] = m3d->vertex[m3d->face[i].normal[1]].y;
- model.meshes[k].normals[l*9 + 5] = m3d->vertex[m3d->face[i].normal[1]].z;
- model.meshes[k].normals[l*9 + 6] = m3d->vertex[m3d->face[i].normal[2]].x;
- model.meshes[k].normals[l*9 + 7] = m3d->vertex[m3d->face[i].normal[2]].y;
- model.meshes[k].normals[l*9 + 8] = m3d->vertex[m3d->face[i].normal[2]].z;
- }
-
- // Add skin (vertex / bone weight pairs)
- if (m3d->numbone && m3d->numskin)
- {
- for (n = 0; n < 3; n++)
- {
- int skinid = m3d->vertex[m3d->face[i].vertex[n]].skinid;
-
- // Check if there is a skin for this mesh, should be, just failsafe
- if (skinid != M3D_UNDEF && skinid < (int)m3d->numskin)
- {
- for (j = 0; j < 4; j++)
- {
- model.meshes[k].boneIds[l*12 + n*4 + j] = m3d->skin[skinid].boneid[j];
- model.meshes[k].boneWeights[l*12 + n*4 + j] = m3d->skin[skinid].weight[j];
- }
- }
- else
- {
- // raylib does not handle boneless meshes with skeletal animations, so
- // we put all vertices without a bone into a special "no bone" bone
- model.meshes[k].boneIds[l*12 + n*4] = m3d->numbone;
- model.meshes[k].boneWeights[l*12 + n*4] = 1.0f;
- }
- }
- }
- }
-
- // Load materials
- for (i = 0; i < (int)m3d->nummaterial; i++)
- {
- model.materials[i + 1] = LoadMaterialDefault();
-
- for (j = 0; j < m3d->material[i].numprop; j++)
- {
- prop = &m3d->material[i].prop[j];
-
- switch (prop->type)
- {
- case m3dp_Kd:
- {
- memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].color, &prop->value.color, 4);
- model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
- } break;
- case m3dp_Ks:
- {
- memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].color, &prop->value.color, 4);
- } break;
- case m3dp_Ns:
- {
- model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].value = prop->value.fnum;
- } break;
- case m3dp_Ke:
- {
- memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].color, &prop->value.color, 4);
- model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].value = 0.0f;
- } break;
- case m3dp_Pm:
- {
- model.materials[i + 1].maps[MATERIAL_MAP_METALNESS].value = prop->value.fnum;
- } break;
- case m3dp_Pr:
- {
- model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].value = prop->value.fnum;
- } break;
- case m3dp_Ps:
- {
- model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].color = WHITE;
- model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].value = prop->value.fnum;
- } break;
- default:
- {
- if (prop->type >= 128)
- {
- Image image = { 0 };
- image.data = m3d->texture[prop->value.textureid].d;
- image.width = m3d->texture[prop->value.textureid].w;
- image.height = m3d->texture[prop->value.textureid].h;
- image.mipmaps = 1;
- image.format = (m3d->texture[prop->value.textureid].f == 4)? PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 :
- ((m3d->texture[prop->value.textureid].f == 3)? PIXELFORMAT_UNCOMPRESSED_R8G8B8 :
- ((m3d->texture[prop->value.textureid].f == 2)? PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA : PIXELFORMAT_UNCOMPRESSED_GRAYSCALE));
-
- switch (prop->type)
- {
- case m3dp_map_Kd: model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTextureFromImage(image); break;
- case m3dp_map_Ks: model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].texture = LoadTextureFromImage(image); break;
- case m3dp_map_Ke: model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(image); break;
- case m3dp_map_Km: model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(image); break;
- case m3dp_map_Ka: model.materials[i + 1].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(image); break;
- case m3dp_map_Pm: model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(image); break;
- default: break;
- }
- }
- } break;
- }
- }
- }
-
- // Load bones
- if (m3d->numbone)
- {
- model.boneCount = m3d->numbone + 1;
- model.bones = RL_CALLOC(model.boneCount, sizeof(BoneInfo));
- model.bindPose = RL_CALLOC(model.boneCount, sizeof(Transform));
-
- for (i = 0; i < (int)m3d->numbone; i++)
- {
- model.bones[i].parent = m3d->bone[i].parent;
- strncpy(model.bones[i].name, m3d->bone[i].name, sizeof(model.bones[i].name));
- model.bindPose[i].translation.x = m3d->vertex[m3d->bone[i].pos].x*m3d->scale;
- model.bindPose[i].translation.y = m3d->vertex[m3d->bone[i].pos].y*m3d->scale;
- model.bindPose[i].translation.z = m3d->vertex[m3d->bone[i].pos].z*m3d->scale;
- model.bindPose[i].rotation.x = m3d->vertex[m3d->bone[i].ori].x;
- model.bindPose[i].rotation.y = m3d->vertex[m3d->bone[i].ori].y;
- model.bindPose[i].rotation.z = m3d->vertex[m3d->bone[i].ori].z;
- model.bindPose[i].rotation.w = m3d->vertex[m3d->bone[i].ori].w;
-
- // TODO: If the orientation quaternion is not normalized, then that's encoding scaling
- model.bindPose[i].rotation = QuaternionNormalize(model.bindPose[i].rotation);
- model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f;
-
- // Child bones are stored in parent bone relative space, convert that into model space
- if (model.bones[i].parent >= 0)
- {
- model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
- model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
- model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
- model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
- }
- }
-
- // Add a special "no bone" bone
- model.bones[i].parent = -1;
- strcpy(model.bones[i].name, "NO BONE");
- model.bindPose[i].translation.x = 0.0f;
- model.bindPose[i].translation.y = 0.0f;
- model.bindPose[i].translation.z = 0.0f;
- model.bindPose[i].rotation.x = 0.0f;
- model.bindPose[i].rotation.y = 0.0f;
- model.bindPose[i].rotation.z = 0.0f;
- model.bindPose[i].rotation.w = 1.0f;
- model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f;
- }
-
- // Load bone-pose default mesh into animation vertices. These will be updated when UpdateModelAnimation gets
- // called, but not before, however DrawMesh uses these if they exist (so not good if they are left empty).
- if (m3d->numbone && m3d->numskin)
- {
- for(i = 0; i < model.meshCount; i++)
- {
- memcpy(model.meshes[i].animVertices, model.meshes[i].vertices, model.meshes[i].vertexCount*3*sizeof(float));
- memcpy(model.meshes[i].animNormals, model.meshes[i].normals, model.meshes[i].vertexCount*3*sizeof(float));
- }
- }
-
- m3d_free(m3d);
- UnloadFileData(fileData);
- }
-
- return model;
-}
-
-#define M3D_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms)
-
-// Load M3D animation data
-static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, unsigned int *animCount)
-{
- m3d_t *m3d = NULL;
- unsigned int bytesRead = 0;
- unsigned char *fileData = LoadFileData(fileName, &bytesRead);
- ModelAnimation *animations = NULL;
- int i = 0, j = 0;
-
- *animCount = 0;
-
- if (fileData != NULL)
- {
- m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL);
-
- if (!m3d || M3D_ERR_ISFATAL(m3d->errcode))
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d ? m3d->errcode : -2);
- UnloadFileData(fileData);
- return NULL;
- }
- else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i animations, %i bones, %i skins", fileName,
- m3d->numaction, m3d->numbone, m3d->numskin);
-
- // No animation or bone+skin?
- if (!m3d->numaction || !m3d->numbone || !m3d->numskin)
- {
- m3d_free(m3d);
- UnloadFileData(fileData);
- return NULL;
- }
-
- animations = RL_MALLOC(m3d->numaction*sizeof(ModelAnimation));
- *animCount = m3d->numaction;
-
- for (unsigned int a = 0; a < m3d->numaction; a++)
- {
- animations[a].frameCount = m3d->action[a].durationmsec / M3D_ANIMDELAY;
- animations[a].boneCount = m3d->numbone + 1;
- animations[a].bones = RL_MALLOC((m3d->numbone + 1)*sizeof(BoneInfo));
- animations[a].framePoses = RL_MALLOC(animations[a].frameCount*sizeof(Transform *));
- // strncpy(animations[a].name, m3d->action[a].name, sizeof(animations[a].name));
- TRACELOG(LOG_INFO, "MODEL: [%s] animation #%i: %i msec, %i frames", fileName, a, m3d->action[a].durationmsec, animations[a].frameCount);
-
- for (i = 0; i < (int)m3d->numbone; i++)
- {
- animations[a].bones[i].parent = m3d->bone[i].parent;
- strncpy(animations[a].bones[i].name, m3d->bone[i].name, sizeof(animations[a].bones[i].name));
- }
-
- // A special, never transformed "no bone" bone, used for boneless vertices
- animations[a].bones[i].parent = -1;
- strcpy(animations[a].bones[i].name, "NO BONE");
-
- // M3D stores frames at arbitrary intervals with sparse skeletons. We need full skeletons at
- // regular intervals, so let the M3D SDK do the heavy lifting and calculate interpolated bones
- for (i = 0; i < animations[a].frameCount; i++)
- {
- animations[a].framePoses[i] = RL_MALLOC((m3d->numbone + 1)*sizeof(Transform));
-
- m3db_t *pose = m3d_pose(m3d, a, i*M3D_ANIMDELAY);
-
- if (pose != NULL)
- {
- for (j = 0; j < (int)m3d->numbone; j++)
- {
- animations[a].framePoses[i][j].translation.x = m3d->vertex[pose[j].pos].x*m3d->scale;
- animations[a].framePoses[i][j].translation.y = m3d->vertex[pose[j].pos].y*m3d->scale;
- animations[a].framePoses[i][j].translation.z = m3d->vertex[pose[j].pos].z*m3d->scale;
- animations[a].framePoses[i][j].rotation.x = m3d->vertex[pose[j].ori].x;
- animations[a].framePoses[i][j].rotation.y = m3d->vertex[pose[j].ori].y;
- animations[a].framePoses[i][j].rotation.z = m3d->vertex[pose[j].ori].z;
- animations[a].framePoses[i][j].rotation.w = m3d->vertex[pose[j].ori].w;
- animations[a].framePoses[i][j].rotation = QuaternionNormalize(animations[a].framePoses[i][j].rotation);
- animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f;
-
- // Child bones are stored in parent bone relative space, convert that into model space
- if (animations[a].bones[j].parent >= 0)
- {
- animations[a].framePoses[i][j].rotation = QuaternionMultiply(animations[a].framePoses[i][animations[a].bones[j].parent].rotation, animations[a].framePoses[i][j].rotation);
- animations[a].framePoses[i][j].translation = Vector3RotateByQuaternion(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].rotation);
- animations[a].framePoses[i][j].translation = Vector3Add(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].translation);
- animations[a].framePoses[i][j].scale = Vector3Multiply(animations[a].framePoses[i][j].scale, animations[a].framePoses[i][animations[a].bones[j].parent].scale);
- }
- }
-
- // Default transform for the "no bone" bone
- animations[a].framePoses[i][j].translation.x = 0.0f;
- animations[a].framePoses[i][j].translation.y = 0.0f;
- animations[a].framePoses[i][j].translation.z = 0.0f;
- animations[a].framePoses[i][j].rotation.x = 0.0f;
- animations[a].framePoses[i][j].rotation.y = 0.0f;
- animations[a].framePoses[i][j].rotation.z = 0.0f;
- animations[a].framePoses[i][j].rotation.w = 1.0f;
- animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f;
- RL_FREE(pose);
- }
- }
- }
-
- m3d_free(m3d);
- UnloadFileData(fileData);
- }
-
- return animations;
-}
-#endif
-
-#endif // SUPPORT_MODULE_RMODELS