aboutsummaryrefslogtreecommitdiff
path: root/raylib/src/external/qoa.h
diff options
context:
space:
mode:
Diffstat (limited to 'raylib/src/external/qoa.h')
-rw-r--r--raylib/src/external/qoa.h170
1 files changed, 119 insertions, 51 deletions
diff --git a/raylib/src/external/qoa.h b/raylib/src/external/qoa.h
index 59d90ad..fc62f47 100644
--- a/raylib/src/external/qoa.h
+++ b/raylib/src/external/qoa.h
@@ -8,71 +8,96 @@ QOA - The "Quite OK Audio" format for fast, lossy audio compression
-- Data Format
-A QOA file has an 8 byte file header, followed by a number of frames. Each frame
-consists of an 8 byte frame header, the current 8 byte en-/decoder state per
-channel and 256 slices per channel. Each slice is 8 bytes wide and encodes 20
-samples of audio data.
+QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels,
+sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits.
-Note that the last frame of a file may contain less than 256 slices per channel.
-The last slice (per channel) in the last frame may contain less 20 samples, but
-the slice will still be 8 bytes wide, with the unused samples zeroed out.
+The compression method employed in QOA is lossy; it discards some information
+from the uncompressed PCM data. For many types of audio signals this compression
+is "transparent", i.e. the difference from the original file is often not
+audible.
-The samplerate and number of channels is only stated in the frame headers, but
-not in the file header. A decoder may peek into the first frame of the file to
-find these values.
+QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single
+sample therefore requires 3.2 bits of storage space, resulting in a 5x
+compression (16 / 3.2).
-In a valid QOA file all frames have the same number of channels and the same
-samplerate. These restrictions may be relaxed for streaming. This remains to
-be decided.
+A QOA file consists of an 8 byte file header, followed by a number of frames.
+Each frame contains an 8 byte frame header, the current 16 byte en-/decoder
+state per channel and 256 slices per channel. Each slice is 8 bytes wide and
+encodes 20 samples of audio data.
-All values in a QOA file are BIG ENDIAN. Luckily, EVERYTHING in a QOA file,
-including the headers, is 64 bit aligned, so it's possible to read files with
-just a read_u64() that does the byte swapping if necessary.
-
-In pseudocode, the file layout is as follows:
+All values, including the slices, are big endian. The file layout is as follows:
struct {
struct {
- char magic[4]; // magic bytes 'qoaf'
- uint32_t samples; // number of samples per channel in this file
- } file_header; // = 64 bits
+ char magic[4]; // magic bytes "qoaf"
+ uint32_t samples; // samples per channel in this file
+ } file_header;
struct {
struct {
- uint8_t num_channels; // number of channels
+ uint8_t num_channels; // no. of channels
uint24_t samplerate; // samplerate in hz
- uint16_t fsamples; // sample count per channel in this frame
- uint16_t fsize; // frame size (including the frame header)
- } frame_header; // = 64 bits
+ uint16_t fsamples; // samples per channel in this frame
+ uint16_t fsize; // frame size (includes this header)
+ } frame_header;
struct {
- int16_t history[4]; // = 64 bits
- int16_t weights[4]; // = 64 bits
+ int16_t history[4]; // most recent last
+ int16_t weights[4]; // most recent last
} lms_state[num_channels];
- qoa_slice_t slices[256][num_channels]; // = 64 bits each
- } frames[samples * channels / qoa_max_framesize()];
-} qoa_file;
+ qoa_slice_t slices[256][num_channels];
+
+ } frames[ceil(samples / (256 * 20))];
+} qoa_file_t;
-Wheras the 64bit qoa_slice_t is defined as follows:
+Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized
+residuals `qrNN`:
.- QOA_SLICE -- 64 bits, 20 samples --------------------------/ /------------.
| Byte[0] | Byte[1] | Byte[2] \ \ Byte[7] |
| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 / / 2 1 0 |
|------------+--------+--------+--------+---------+---------+-\ \--+---------|
-| sf_index | r00 | r01 | r02 | r03 | r04 | / / | r19 |
+| sf_quant | qr00 | qr01 | qr02 | qr03 | qr04 | / / | qr19 |
`-------------------------------------------------------------\ \------------`
-`sf_index` defines the scalefactor to use for this slice as an index into the
-qoa_scalefactor_tab[16]
+Each frame except the last must contain exactly 256 slices per channel. The last
+frame may contain between 1 .. 256 (inclusive) slices per channel. The last
+slice (for each channel) in the last frame may contain less than 20 samples; the
+slice still must be 8 bytes wide, with the unused samples zeroed out.
+
+Channels are interleaved per slice. E.g. for 2 channel stereo:
+slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ...
+
+A valid QOA file or stream must have at least one frame. Each frame must contain
+at least one channel and one sample with a samplerate between 1 .. 16777215
+(inclusive).
+
+If the total number of samples is not known by the encoder, the samples in the
+file header may be set to 0x00000000 to indicate that the encoder is
+"streaming". In a streaming context, the samplerate and number of channels may
+differ from frame to frame. For static files (those with samples set to a
+non-zero value), each frame must have the same number of channels and same
+samplerate.
-`r00`--`r19` are the residuals for the individual samples, divided by the
-scalefactor and quantized by the qoa_quant_tab[].
+Note that this implementation of QOA only handles files with a known total
+number of samples.
-In the decoder, a prediction of the next sample is computed by multiplying the
-state (the last four output samples) with the predictor. The residual from the
-slice is then dequantized using the qoa_dequant_tab[] and added to the
-prediction. The result is clamped to int16 to form the final output sample.
+A decoder should support at least 8 channels. The channel layout for channel
+counts 1 .. 8 is:
+
+ 1. Mono
+ 2. L, R
+ 3. L, R, C
+ 4. FL, FR, B/SL, B/SR
+ 5. FL, FR, C, B/SL, B/SR
+ 6. FL, FR, C, LFE, B/SL, B/SR
+ 7. FL, FR, C, LFE, B, SL, SR
+ 8. FL, FR, C, LFE, BL, BR, SL, SR
+
+QOA predicts each audio sample based on the previously decoded ones using a
+"Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the
+dequantized residual forms the final output sample.
*/
@@ -158,7 +183,7 @@ the higher end. Note that the residual zero is identical to the lowest positive
value. This is mostly fine, since the qoa_div() function always rounds away
from zero. */
-static int qoa_quant_tab[17] = {
+static const int qoa_quant_tab[17] = {
7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */
0, /* 0 */
0, 2, 2, 4, 4, 6, 6, 6 /* 1.. 8 */
@@ -169,13 +194,13 @@ static int qoa_quant_tab[17] = {
less accurate at the higher end. In theory, the highest scalefactor that we
would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we
rely on the LMS filter to predict samples accurately enough that a maximum
-residual of one quarter of the 16 bit range is high sufficient. I.e. with the
+residual of one quarter of the 16 bit range is sufficient. I.e. with the
scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14.
The scalefactor values are computed as:
scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */
-static int qoa_scalefactor_tab[16] = {
+static const int qoa_scalefactor_tab[16] = {
1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048
};
@@ -188,7 +213,7 @@ do this in .16 fixed point with integers, instead of floats.
The reciprocal_tab is computed as:
reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */
-static int qoa_reciprocal_tab[16] = {
+static const int qoa_reciprocal_tab[16] = {
65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32
};
@@ -200,9 +225,13 @@ Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4
instead of 1. The dequant_tab assumes the following dequantized values for each
of the quant_tab indices and is computed as:
float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7};
-dequant_tab[s][q] <- round(scalefactor_tab[s] * dqt[q]) */
+dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q])
+
+The rounding employed here is "to nearest, ties away from zero", i.e. positive
+and negative values are treated symmetrically.
+*/
-static int qoa_dequant_tab[16][8] = {
+static const int qoa_dequant_tab[16][8] = {
{ 1, -1, 3, -3, 5, -5, 7, -7},
{ 5, -5, 18, -18, 32, -32, 49, -49},
{ 16, -16, 53, -53, 95, -95, 147, -147},
@@ -270,7 +299,21 @@ static inline int qoa_div(int v, int scalefactor) {
}
static inline int qoa_clamp(int v, int min, int max) {
- return (v < min) ? min : (v > max) ? max : v;
+ if (v < min) { return min; }
+ if (v > max) { return max; }
+ return v;
+}
+
+/* This specialized clamp function for the signed 16 bit range improves decode
+performance quite a bit. The extra if() statement works nicely with the CPUs
+branch prediction as this branch is rarely taken. */
+
+static inline int qoa_clamp_s16(int v) {
+ if ((unsigned int)(v + 32768) > 65535) {
+ if (v < -32768) { return -32768; }
+ if (v > 32767) { return 32767; }
+ }
+ return v;
}
static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) {
@@ -312,6 +355,7 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
unsigned int p = 0;
unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN;
unsigned int frame_size = QOA_FRAME_SIZE(channels, slices);
+ int prev_scalefactor[QOA_MAX_CHANNELS] = {0};
/* Write the frame header */
qoa_write_u64((
@@ -321,8 +365,24 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
(qoa_uint64_t)frame_size
), bytes, &p);
- /* Write the current LMS state */
+
for (int c = 0; c < channels; c++) {
+ /* If the weights have grown too large, reset them to 0. This may happen
+ with certain high-frequency sounds. This is a last resort and will
+ introduce quite a bit of noise, but should at least prevent pops/clicks */
+ int weights_sum =
+ qoa->lms[c].weights[0] * qoa->lms[c].weights[0] +
+ qoa->lms[c].weights[1] * qoa->lms[c].weights[1] +
+ qoa->lms[c].weights[2] * qoa->lms[c].weights[2] +
+ qoa->lms[c].weights[3] * qoa->lms[c].weights[3];
+ if (weights_sum > 0x2fffffff) {
+ qoa->lms[c].weights[0] = 0;
+ qoa->lms[c].weights[1] = 0;
+ qoa->lms[c].weights[2] = 0;
+ qoa->lms[c].weights[3] = 0;
+ }
+
+ /* Write the current LMS state */
qoa_uint64_t weights = 0;
qoa_uint64_t history = 0;
for (int i = 0; i < QOA_LMS_LEN; i++) {
@@ -348,8 +408,13 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
qoa_uint64_t best_error = -1;
qoa_uint64_t best_slice;
qoa_lms_t best_lms;
+ int best_scalefactor;
- for (int scalefactor = 0; scalefactor < 16; scalefactor++) {
+ for (int sfi = 0; sfi < 16; sfi++) {
+ /* There is a strong correlation between the scalefactors of
+ neighboring slices. As an optimization, start testing
+ the best scalefactor of the previous slice first. */
+ int scalefactor = (sfi + prev_scalefactor[c]) % 16;
/* We have to reset the LMS state to the last known good one
before trying each scalefactor, as each pass updates the LMS
@@ -367,7 +432,7 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
int clamped = qoa_clamp(scaled, -8, 8);
int quantized = qoa_quant_tab[clamped + 8];
int dequantized = qoa_dequant_tab[scalefactor][quantized];
- int reconstructed = qoa_clamp(predicted + dequantized, -32768, 32767);
+ int reconstructed = qoa_clamp_s16(predicted + dequantized);
long long error = (sample - reconstructed);
current_error += error * error;
@@ -383,9 +448,12 @@ unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned
best_error = current_error;
best_slice = slice;
best_lms = lms;
+ best_scalefactor = scalefactor;
}
}
+ prev_scalefactor[c] = best_scalefactor;
+
qoa->lms[c] = best_lms;
#ifdef QOA_RECORD_TOTAL_ERROR
qoa->error += best_error;
@@ -553,7 +621,7 @@ unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa
int predicted = qoa_lms_predict(&qoa->lms[c]);
int quantized = (slice >> 57) & 0x7;
int dequantized = qoa_dequant_tab[scalefactor][quantized];
- int reconstructed = qoa_clamp(predicted + dequantized, -32768, 32767);
+ int reconstructed = qoa_clamp_s16(predicted + dequantized);
sample_data[si] = reconstructed;
slice <<= 3;