aboutsummaryrefslogtreecommitdiff
path: root/tinycc/arm-asm.c
diff options
context:
space:
mode:
Diffstat (limited to 'tinycc/arm-asm.c')
-rw-r--r--tinycc/arm-asm.c3235
1 files changed, 3235 insertions, 0 deletions
diff --git a/tinycc/arm-asm.c b/tinycc/arm-asm.c
new file mode 100644
index 0000000..a6dec4c
--- /dev/null
+++ b/tinycc/arm-asm.c
@@ -0,0 +1,3235 @@
+/*
+ * ARM specific functions for TCC assembler
+ *
+ * Copyright (c) 2001, 2002 Fabrice Bellard
+ * Copyright (c) 2020 Danny Milosavljevic
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifdef TARGET_DEFS_ONLY
+
+#define CONFIG_TCC_ASM
+#define NB_ASM_REGS 16
+
+ST_FUNC void g(int c);
+ST_FUNC void gen_le16(int c);
+ST_FUNC void gen_le32(int c);
+
+/*************************************************************/
+#else
+/*************************************************************/
+
+#define USING_GLOBALS
+#include "tcc.h"
+
+enum {
+ OPT_REG32,
+ OPT_REGSET32,
+ OPT_IM8,
+ OPT_IM8N,
+ OPT_IM32,
+ OPT_VREG32,
+ OPT_VREG64,
+};
+#define OP_REG32 (1 << OPT_REG32)
+#define OP_VREG32 (1 << OPT_VREG32)
+#define OP_VREG64 (1 << OPT_VREG64)
+#define OP_REG (OP_REG32 | OP_VREG32 | OP_VREG64)
+#define OP_IM32 (1 << OPT_IM32)
+#define OP_IM8 (1 << OPT_IM8)
+#define OP_IM8N (1 << OPT_IM8N)
+#define OP_REGSET32 (1 << OPT_REGSET32)
+
+typedef struct Operand {
+ uint32_t type;
+ union {
+ uint8_t reg;
+ uint16_t regset;
+ ExprValue e;
+ };
+} Operand;
+
+/* Read the VFP register referred to by token T.
+ If OK, returns its number.
+ If not OK, returns -1. */
+static int asm_parse_vfp_regvar(int t, int double_precision)
+{
+ if (double_precision) {
+ if (t >= TOK_ASM_d0 && t <= TOK_ASM_d15)
+ return t - TOK_ASM_d0;
+ } else {
+ if (t >= TOK_ASM_s0 && t <= TOK_ASM_s31)
+ return t - TOK_ASM_s0;
+ }
+ return -1;
+}
+
+/* Parse a text containing operand and store the result in OP */
+static void parse_operand(TCCState *s1, Operand *op)
+{
+ ExprValue e;
+ int8_t reg;
+ uint16_t regset = 0;
+
+ op->type = 0;
+
+ if (tok == '{') { // regset literal
+ next(); // skip '{'
+ while (tok != '}' && tok != TOK_EOF) {
+ reg = asm_parse_regvar(tok);
+ if (reg == -1) {
+ expect("register");
+ return;
+ } else
+ next(); // skip register name
+
+ if ((1 << reg) < regset)
+ tcc_warning("registers will be processed in ascending order by hardware--but are not specified in ascending order here");
+ regset |= 1 << reg;
+ if (tok != ',')
+ break;
+ next(); // skip ','
+ }
+ if (tok != '}')
+ expect("'}'");
+ next(); // skip '}'
+ if (regset == 0) {
+ // ARM instructions don't support empty regset.
+ tcc_error("empty register list is not supported");
+ } else {
+ op->type = OP_REGSET32;
+ op->regset = regset;
+ }
+ return;
+ } else if ((reg = asm_parse_regvar(tok)) != -1) {
+ next(); // skip register name
+ op->type = OP_REG32;
+ op->reg = (uint8_t) reg;
+ return;
+ } else if ((reg = asm_parse_vfp_regvar(tok, 0)) != -1) {
+ next(); // skip register name
+ op->type = OP_VREG32;
+ op->reg = (uint8_t) reg;
+ return;
+ } else if ((reg = asm_parse_vfp_regvar(tok, 1)) != -1) {
+ next(); // skip register name
+ op->type = OP_VREG64;
+ op->reg = (uint8_t) reg;
+ return;
+ } else if (tok == '#' || tok == '$') {
+ /* constant value */
+ next(); // skip '#' or '$'
+ }
+ asm_expr(s1, &e);
+ op->type = OP_IM32;
+ op->e = e;
+ if (!op->e.sym) {
+ if ((int) op->e.v < 0 && (int) op->e.v >= -255)
+ op->type = OP_IM8N;
+ else if (op->e.v == (uint8_t)op->e.v)
+ op->type = OP_IM8;
+ } else
+ expect("operand");
+}
+
+/* XXX: make it faster ? */
+ST_FUNC void g(int c)
+{
+ int ind1;
+ if (nocode_wanted)
+ return;
+ ind1 = ind + 1;
+ if (ind1 > cur_text_section->data_allocated)
+ section_realloc(cur_text_section, ind1);
+ cur_text_section->data[ind] = c;
+ ind = ind1;
+}
+
+ST_FUNC void gen_le16 (int i)
+{
+ g(i);
+ g(i>>8);
+}
+
+ST_FUNC void gen_le32 (int i)
+{
+ int ind1;
+ if (nocode_wanted)
+ return;
+ ind1 = ind + 4;
+ if (ind1 > cur_text_section->data_allocated)
+ section_realloc(cur_text_section, ind1);
+ cur_text_section->data[ind++] = i & 0xFF;
+ cur_text_section->data[ind++] = (i >> 8) & 0xFF;
+ cur_text_section->data[ind++] = (i >> 16) & 0xFF;
+ cur_text_section->data[ind++] = (i >> 24) & 0xFF;
+}
+
+ST_FUNC void gen_expr32(ExprValue *pe)
+{
+ gen_le32(pe->v);
+}
+
+static uint32_t condition_code_of_token(int token) {
+ if (token < TOK_ASM_nopeq) {
+ expect("condition-enabled instruction");
+ return 0;
+ } else
+ return (token - TOK_ASM_nopeq) & 15;
+}
+
+static void asm_emit_opcode(int token, uint32_t opcode) {
+ gen_le32((condition_code_of_token(token) << 28) | opcode);
+}
+
+static void asm_emit_unconditional_opcode(uint32_t opcode) {
+ gen_le32(opcode);
+}
+
+static void asm_emit_coprocessor_opcode(uint32_t high_nibble, uint8_t cp_number, uint8_t cp_opcode, uint8_t cp_destination_register, uint8_t cp_n_operand_register, uint8_t cp_m_operand_register, uint8_t cp_opcode2, int inter_processor_transfer)
+{
+ uint32_t opcode = 0xe000000;
+ if (inter_processor_transfer)
+ opcode |= 1 << 4;
+ //assert(cp_opcode < 16);
+ opcode |= cp_opcode << 20;
+ //assert(cp_n_operand_register < 16);
+ opcode |= cp_n_operand_register << 16;
+ //assert(cp_destination_register < 16);
+ opcode |= cp_destination_register << 12;
+ //assert(cp_number < 16);
+ opcode |= cp_number << 8;
+ //assert(cp_information < 8);
+ opcode |= cp_opcode2 << 5;
+ //assert(cp_m_operand_register < 16);
+ opcode |= cp_m_operand_register;
+ asm_emit_unconditional_opcode((high_nibble << 28) | opcode);
+}
+
+static void asm_nullary_opcode(int token)
+{
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_nopeq:
+ asm_emit_opcode(token, 0xd << 21); // mov r0, r0
+ break;
+ case TOK_ASM_wfeeq:
+ asm_emit_opcode(token, 0x320f002);
+ case TOK_ASM_wfieq:
+ asm_emit_opcode(token, 0x320f003);
+ break;
+ default:
+ expect("nullary instruction");
+ }
+}
+
+static void asm_unary_opcode(TCCState *s1, int token)
+{
+ Operand op;
+ parse_operand(s1, &op);
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_swieq:
+ case TOK_ASM_svceq:
+ if (op.type != OP_IM8)
+ expect("immediate 8-bit unsigned integer");
+ else {
+ /* Note: Dummy operand (ignored by processor): ARM ref documented 0...255, ARM instruction set documented 24 bit */
+ asm_emit_opcode(token, (0xf << 24) | op.e.v);
+ }
+ break;
+ default:
+ expect("unary instruction");
+ }
+}
+
+static void asm_binary_opcode(TCCState *s1, int token)
+{
+ Operand ops[2];
+ Operand rotation;
+ uint32_t encoded_rotation = 0;
+ uint64_t amount;
+ parse_operand(s1, &ops[0]);
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+ parse_operand(s1, &ops[1]);
+ if (ops[0].type != OP_REG32) {
+ expect("(destination operand) register");
+ return;
+ }
+
+ if (ops[0].reg == 15) {
+ tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
+ return;
+ }
+
+ if (ops[0].reg == 13)
+ tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
+
+ if (ops[1].type != OP_REG32) {
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_movteq:
+ case TOK_ASM_movweq:
+ if (ops[1].type == OP_IM8 || ops[1].type == OP_IM8N || ops[1].type == OP_IM32) {
+ if (ops[1].e.v >= 0 && ops[1].e.v <= 0xFFFF) {
+ uint16_t immediate_value = ops[1].e.v;
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_movteq:
+ asm_emit_opcode(token, 0x3400000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
+ break;
+ case TOK_ASM_movweq:
+ asm_emit_opcode(token, 0x3000000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
+ break;
+ }
+ } else
+ expect("(source operand) immediate 16 bit value");
+ } else
+ expect("(source operand) immediate");
+ break;
+ default:
+ expect("(source operand) register");
+ }
+ return;
+ }
+
+ if (ops[1].reg == 15) {
+ tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
+ return;
+ }
+
+ if (ops[1].reg == 13)
+ tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
+
+ if (tok == ',') {
+ next(); // skip ','
+ if (tok == TOK_ASM_ror) {
+ next(); // skip 'ror'
+ parse_operand(s1, &rotation);
+ if (rotation.type != OP_IM8) {
+ expect("immediate value for rotation");
+ return;
+ } else {
+ amount = rotation.e.v;
+ switch (amount) {
+ case 8:
+ encoded_rotation = 1 << 10;
+ break;
+ case 16:
+ encoded_rotation = 2 << 10;
+ break;
+ case 24:
+ encoded_rotation = 3 << 10;
+ break;
+ default:
+ expect("'8' or '16' or '24'");
+ return;
+ }
+ }
+ }
+ }
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_clzeq:
+ if (encoded_rotation)
+ tcc_error("clz does not support rotation");
+ asm_emit_opcode(token, 0x16f0f10 | (ops[0].reg << 12) | ops[1].reg);
+ break;
+ case TOK_ASM_sxtbeq:
+ asm_emit_opcode(token, 0x6af0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
+ break;
+ case TOK_ASM_sxtheq:
+ asm_emit_opcode(token, 0x6bf0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
+ break;
+ case TOK_ASM_uxtbeq:
+ asm_emit_opcode(token, 0x6ef0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
+ break;
+ case TOK_ASM_uxtheq:
+ asm_emit_opcode(token, 0x6ff0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
+ break;
+ default:
+ expect("binary instruction");
+ }
+}
+
+static void asm_coprocessor_opcode(TCCState *s1, int token) {
+ uint8_t coprocessor;
+ Operand opcode1;
+ Operand opcode2;
+ uint8_t registers[3];
+ unsigned int i;
+ uint8_t high_nibble;
+ uint8_t mrc = 0;
+
+ if (tok >= TOK_ASM_p0 && tok <= TOK_ASM_p15) {
+ coprocessor = tok - TOK_ASM_p0;
+ next();
+ } else {
+ expect("'p<number>'");
+ return;
+ }
+
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+
+ parse_operand(s1, &opcode1);
+ if (opcode1.type != OP_IM8 || opcode1.e.v > 15) {
+ tcc_error("opcode1 of instruction '%s' must be an immediate value between 0 and 15", get_tok_str(token, NULL));
+ return;
+ }
+
+ for (i = 0; i < 3; ++i) {
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+ if (i == 0 && token != TOK_ASM_cdp2 && (ARM_INSTRUCTION_GROUP(token) == TOK_ASM_mrceq || ARM_INSTRUCTION_GROUP(token) == TOK_ASM_mcreq)) {
+ if (tok >= TOK_ASM_r0 && tok <= TOK_ASM_r15) {
+ registers[i] = tok - TOK_ASM_r0;
+ next();
+ } else {
+ expect("'r<number>'");
+ return;
+ }
+ } else {
+ if (tok >= TOK_ASM_c0 && tok <= TOK_ASM_c15) {
+ registers[i] = tok - TOK_ASM_c0;
+ next();
+ } else {
+ expect("'c<number>'");
+ return;
+ }
+ }
+ }
+ if (tok == ',') {
+ next();
+ parse_operand(s1, &opcode2);
+ } else {
+ opcode2.type = OP_IM8;
+ opcode2.e.v = 0;
+ }
+ if (opcode2.type != OP_IM8 || opcode2.e.v > 15) {
+ tcc_error("opcode2 of instruction '%s' must be an immediate value between 0 and 15", get_tok_str(token, NULL));
+ return;
+ }
+
+ if (token == TOK_ASM_cdp2) {
+ high_nibble = 0xF;
+ asm_emit_coprocessor_opcode(high_nibble, coprocessor, opcode1.e.v, registers[0], registers[1], registers[2], opcode2.e.v, 0);
+ return;
+ } else
+ high_nibble = condition_code_of_token(token);
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_cdpeq:
+ asm_emit_coprocessor_opcode(high_nibble, coprocessor, opcode1.e.v, registers[0], registers[1], registers[2], opcode2.e.v, 0);
+ break;
+ case TOK_ASM_mrceq:
+ // opcode1 encoding changes! highest and lowest bit gone.
+ mrc = 1;
+ /* fallthrough */
+ case TOK_ASM_mcreq:
+ // opcode1 encoding changes! highest and lowest bit gone.
+ if (opcode1.e.v > 7) {
+ tcc_error("opcode1 of instruction '%s' must be an immediate value between 0 and 7", get_tok_str(token, NULL));
+ return;
+ }
+ asm_emit_coprocessor_opcode(high_nibble, coprocessor, (opcode1.e.v << 1) | mrc, registers[0], registers[1], registers[2], opcode2.e.v, 1);
+ break;
+ default:
+ expect("known instruction");
+ }
+}
+
+/* data processing and single data transfer instructions only */
+#define ENCODE_RN(register_index) ((register_index) << 16)
+#define ENCODE_RD(register_index) ((register_index) << 12)
+#define ENCODE_SET_CONDITION_CODES (1 << 20)
+
+/* Note: For data processing instructions, "1" means immediate.
+ Note: For single data transfer instructions, "0" means immediate. */
+#define ENCODE_IMMEDIATE_FLAG (1 << 25)
+
+#define ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER (1 << 4)
+#define ENCODE_BARREL_SHIFTER_MODE_LSL (0 << 5)
+#define ENCODE_BARREL_SHIFTER_MODE_LSR (1 << 5)
+#define ENCODE_BARREL_SHIFTER_MODE_ASR (2 << 5)
+#define ENCODE_BARREL_SHIFTER_MODE_ROR (3 << 5)
+#define ENCODE_BARREL_SHIFTER_REGISTER(register_index) ((register_index) << 8)
+#define ENCODE_BARREL_SHIFTER_IMMEDIATE(value) ((value) << 7)
+
+static void asm_block_data_transfer_opcode(TCCState *s1, int token)
+{
+ uint32_t opcode;
+ int op0_exclam = 0;
+ Operand ops[2];
+ int nb_ops = 1;
+ parse_operand(s1, &ops[0]);
+ if (tok == '!') {
+ op0_exclam = 1;
+ next(); // skip '!'
+ }
+ if (tok == ',') {
+ next(); // skip comma
+ parse_operand(s1, &ops[1]);
+ ++nb_ops;
+ }
+ if (nb_ops < 1) {
+ expect("at least one operand");
+ return;
+ } else if (ops[nb_ops - 1].type != OP_REGSET32) {
+ expect("(last operand) register list");
+ return;
+ }
+
+ // block data transfer: 1 0 0 P U S W L << 20 (general case):
+ // operands:
+ // Rn: bits 19...16 base register
+ // Register List: bits 15...0
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_pusheq: // TODO: Optimize 1-register case to: str ?, [sp, #-4]!
+ // Instruction: 1 I=0 P=1 U=0 S=0 W=1 L=0 << 20, op 1101
+ // operands:
+ // Rn: base register
+ // Register List: bits 15...0
+ if (nb_ops != 1)
+ expect("exactly one operand");
+ else
+ asm_emit_opcode(token, (0x92d << 16) | ops[0].regset); // TODO: base register ?
+ break;
+ case TOK_ASM_popeq: // TODO: Optimize 1-register case to: ldr ?, [sp], #4
+ // Instruction: 1 I=0 P=0 U=1 S=0 W=0 L=1 << 20, op 1101
+ // operands:
+ // Rn: base register
+ // Register List: bits 15...0
+ if (nb_ops != 1)
+ expect("exactly one operand");
+ else
+ asm_emit_opcode(token, (0x8bd << 16) | ops[0].regset); // TODO: base register ?
+ break;
+ case TOK_ASM_stmdaeq:
+ case TOK_ASM_ldmdaeq:
+ case TOK_ASM_stmeq:
+ case TOK_ASM_ldmeq:
+ case TOK_ASM_stmiaeq:
+ case TOK_ASM_ldmiaeq:
+ case TOK_ASM_stmdbeq:
+ case TOK_ASM_ldmdbeq:
+ case TOK_ASM_stmibeq:
+ case TOK_ASM_ldmibeq:
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_stmdaeq: // post-decrement store
+ opcode = 0x80 << 20;
+ break;
+ case TOK_ASM_ldmdaeq: // post-decrement load
+ opcode = 0x81 << 20;
+ break;
+ case TOK_ASM_stmeq: // post-increment store
+ case TOK_ASM_stmiaeq: // post-increment store
+ opcode = 0x88 << 20;
+ break;
+ case TOK_ASM_ldmeq: // post-increment load
+ case TOK_ASM_ldmiaeq: // post-increment load
+ opcode = 0x89 << 20;
+ break;
+ case TOK_ASM_stmdbeq: // pre-decrement store
+ opcode = 0x90 << 20;
+ break;
+ case TOK_ASM_ldmdbeq: // pre-decrement load
+ opcode = 0x91 << 20;
+ break;
+ case TOK_ASM_stmibeq: // pre-increment store
+ opcode = 0x98 << 20;
+ break;
+ case TOK_ASM_ldmibeq: // pre-increment load
+ opcode = 0x99 << 20;
+ break;
+ default:
+ tcc_error("internal error: This place should not be reached (fallback in asm_block_data_transfer_opcode)");
+ }
+ // operands:
+ // Rn: first operand
+ // Register List: lower bits
+ if (nb_ops != 2)
+ expect("exactly two operands");
+ else if (ops[0].type != OP_REG32)
+ expect("(first operand) register");
+ else {
+ if (op0_exclam)
+ opcode |= 1 << 21; // writeback
+ asm_emit_opcode(token, opcode | ENCODE_RN(ops[0].reg) | ops[1].regset);
+ }
+ break;
+ default:
+ expect("block data transfer instruction");
+ }
+}
+
+/* Parses shift directive and returns the parts that would have to be set in the opcode because of it.
+ Does not encode the actual shift amount.
+ It's not an error if there is no shift directive.
+
+ NB_SHIFT: will be set to 1 iff SHIFT is filled. Note that for rrx, there's no need to fill SHIFT.
+ SHIFT: will be filled in with the shift operand to use, if any. */
+static uint32_t asm_parse_optional_shift(TCCState* s1, int* nb_shift, Operand* shift)
+{
+ uint32_t opcode = 0;
+ *nb_shift = 0;
+ switch (tok) {
+ case TOK_ASM_asl:
+ case TOK_ASM_lsl:
+ case TOK_ASM_asr:
+ case TOK_ASM_lsr:
+ case TOK_ASM_ror:
+ switch (tok) {
+ case TOK_ASM_asl:
+ /* fallthrough */
+ case TOK_ASM_lsl:
+ opcode = ENCODE_BARREL_SHIFTER_MODE_LSL;
+ break;
+ case TOK_ASM_asr:
+ opcode = ENCODE_BARREL_SHIFTER_MODE_ASR;
+ break;
+ case TOK_ASM_lsr:
+ opcode = ENCODE_BARREL_SHIFTER_MODE_LSR;
+ break;
+ case TOK_ASM_ror:
+ opcode = ENCODE_BARREL_SHIFTER_MODE_ROR;
+ break;
+ }
+ next();
+ parse_operand(s1, shift);
+ *nb_shift = 1;
+ break;
+ case TOK_ASM_rrx:
+ next();
+ opcode = ENCODE_BARREL_SHIFTER_MODE_ROR;
+ break;
+ }
+ return opcode;
+}
+
+static uint32_t asm_encode_shift(Operand* shift)
+{
+ uint64_t amount;
+ uint32_t operands = 0;
+ switch (shift->type) {
+ case OP_REG32:
+ if (shift->reg == 15)
+ tcc_error("r15 cannot be used as a shift count");
+ else {
+ operands = ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER;
+ operands |= ENCODE_BARREL_SHIFTER_REGISTER(shift->reg);
+ }
+ break;
+ case OP_IM8:
+ amount = shift->e.v;
+ if (amount > 0 && amount < 32)
+ operands = ENCODE_BARREL_SHIFTER_IMMEDIATE(amount);
+ else
+ tcc_error("shift count out of range");
+ break;
+ default:
+ tcc_error("unknown shift amount");
+ }
+ return operands;
+}
+
+static void asm_data_processing_opcode(TCCState *s1, int token)
+{
+ Operand ops[3];
+ int nb_ops;
+ Operand shift = {0};
+ int nb_shift = 0;
+ uint32_t operands = 0;
+
+ /* modulo 16 entries per instruction for the different condition codes */
+ uint32_t opcode_idx = (ARM_INSTRUCTION_GROUP(token) - TOK_ASM_andeq) >> 4;
+ uint32_t opcode_nos = opcode_idx >> 1; // without "s"; "OpCode" in ARM docs
+
+ for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ) {
+ if (tok == TOK_ASM_asl || tok == TOK_ASM_lsl || tok == TOK_ASM_lsr || tok == TOK_ASM_asr || tok == TOK_ASM_ror || tok == TOK_ASM_rrx)
+ break;
+ parse_operand(s1, &ops[nb_ops]);
+ ++nb_ops;
+ if (tok != ',')
+ break;
+ next(); // skip ','
+ }
+ if (tok == ',')
+ next();
+ operands |= asm_parse_optional_shift(s1, &nb_shift, &shift);
+ if (nb_ops < 2)
+ expect("at least two operands");
+ else if (nb_ops == 2) {
+ memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
+ memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
+ nb_ops = 3;
+ } else if (nb_ops == 3) {
+ if (opcode_nos == 0xd || opcode_nos == 0xf || opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) { // mov, mvn, cmp, cmn, tst, teq
+ tcc_error("'%s' cannot be used with three operands", get_tok_str(token, NULL));
+ return;
+ }
+ }
+ if (nb_ops != 3) {
+ expect("two or three operands");
+ return;
+ } else {
+ uint32_t opcode = 0;
+ uint32_t immediate_value;
+ uint8_t half_immediate_rotation;
+ if (nb_shift && shift.type == OP_REG32) {
+ if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
+ (ops[1].type == OP_REG32 && ops[1].reg == 15)) {
+ tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
+ return;
+ }
+ }
+
+ // data processing (general case):
+ // operands:
+ // Rn: bits 19...16 (first operand)
+ // Rd: bits 15...12 (destination)
+ // Operand2: bits 11...0 (second operand); depending on I that's either a register or an immediate
+ // operator:
+ // bits 24...21: "OpCode"--see below
+
+ /* operations in the token list are ordered by opcode */
+ opcode = opcode_nos << 21; // drop "s"
+ if (ops[0].type != OP_REG32)
+ expect("(destination operand) register");
+ else if (opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) // cmp, cmn, tst, teq
+ operands |= ENCODE_SET_CONDITION_CODES; // force S set, otherwise it's a completely different instruction.
+ else
+ operands |= ENCODE_RD(ops[0].reg);
+ if (ops[1].type != OP_REG32)
+ expect("(first source operand) register");
+ else if (!(opcode_nos == 0xd || opcode_nos == 0xf)) // not: mov, mvn (those have only one source operand)
+ operands |= ENCODE_RN(ops[1].reg);
+ switch (ops[2].type) {
+ case OP_REG32:
+ operands |= ops[2].reg;
+ break;
+ case OP_IM8:
+ case OP_IM32:
+ operands |= ENCODE_IMMEDIATE_FLAG;
+ immediate_value = ops[2].e.v;
+ for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
+ if (immediate_value >= 0x00 && immediate_value < 0x100)
+ break;
+ // rotate left by two
+ immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
+ }
+ if (half_immediate_rotation >= 16) {
+ /* fallthrough */
+ } else {
+ operands |= immediate_value;
+ operands |= half_immediate_rotation << 8;
+ break;
+ }
+ case OP_IM8N: // immediate negative value
+ operands |= ENCODE_IMMEDIATE_FLAG;
+ immediate_value = ops[2].e.v;
+ /* Instruction swapping:
+ 0001 = EOR - Rd:= Op1 EOR Op2 -> difficult
+ 0011 = RSB - Rd:= Op2 - Op1 -> difficult
+ 0111 = RSC - Rd:= Op2 - Op1 + C -> difficult
+ 1000 = TST - CC on: Op1 AND Op2 -> difficult
+ 1001 = TEQ - CC on: Op1 EOR Op2 -> difficult
+ 1100 = ORR - Rd:= Op1 OR Op2 -> difficult
+ */
+ switch (opcode_nos) {
+ case 0x0: // AND - Rd:= Op1 AND Op2
+ opcode = 0xe << 21; // BIC
+ immediate_value = ~immediate_value;
+ break;
+ case 0x2: // SUB - Rd:= Op1 - Op2
+ opcode = 0x4 << 21; // ADD
+ immediate_value = -immediate_value;
+ break;
+ case 0x4: // ADD - Rd:= Op1 + Op2
+ opcode = 0x2 << 21; // SUB
+ immediate_value = -immediate_value;
+ break;
+ case 0x5: // ADC - Rd:= Op1 + Op2 + C
+ opcode = 0x6 << 21; // SBC
+ immediate_value = ~immediate_value;
+ break;
+ case 0x6: // SBC - Rd:= Op1 - Op2 + C
+ opcode = 0x5 << 21; // ADC
+ immediate_value = ~immediate_value;
+ break;
+ case 0xa: // CMP - CC on: Op1 - Op2
+ opcode = 0xb << 21; // CMN
+ immediate_value = -immediate_value;
+ break;
+ case 0xb: // CMN - CC on: Op1 + Op2
+ opcode = 0xa << 21; // CMP
+ immediate_value = -immediate_value;
+ break;
+ case 0xd: // MOV - Rd:= Op2
+ opcode = 0xf << 21; // MVN
+ immediate_value = ~immediate_value;
+ break;
+ case 0xe: // BIC - Rd:= Op1 AND NOT Op2
+ opcode = 0x0 << 21; // AND
+ immediate_value = ~immediate_value;
+ break;
+ case 0xf: // MVN - Rd:= NOT Op2
+ opcode = 0xd << 21; // MOV
+ immediate_value = ~immediate_value;
+ break;
+ default:
+ tcc_error("cannot use '%s' with a negative immediate value", get_tok_str(token, NULL));
+ }
+ for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
+ if (immediate_value >= 0x00 && immediate_value < 0x100)
+ break;
+ // rotate left by two
+ immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
+ }
+ if (half_immediate_rotation >= 16) {
+ immediate_value = ops[2].e.v;
+ tcc_error("immediate value 0x%X cannot be encoded into ARM immediate", (unsigned) immediate_value);
+ return;
+ }
+ operands |= immediate_value;
+ operands |= half_immediate_rotation << 8;
+ break;
+ default:
+ expect("(second source operand) register or immediate value");
+ }
+
+ if (nb_shift) {
+ if (operands & ENCODE_IMMEDIATE_FLAG)
+ tcc_error("immediate rotation not implemented");
+ else
+ operands |= asm_encode_shift(&shift);
+ }
+
+ /* S=0 and S=1 entries alternate one after another, in that order */
+ opcode |= (opcode_idx & 1) ? ENCODE_SET_CONDITION_CODES : 0;
+ asm_emit_opcode(token, opcode | operands);
+ }
+}
+
+static void asm_shift_opcode(TCCState *s1, int token)
+{
+ Operand ops[3];
+ int nb_ops;
+ int definitely_neutral = 0;
+ uint32_t opcode = 0xd << 21; // MOV
+ uint32_t operands = 0;
+
+ for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
+ parse_operand(s1, &ops[nb_ops]);
+ if (tok != ',') {
+ ++nb_ops;
+ break;
+ }
+ next(); // skip ','
+ }
+ if (nb_ops < 2) {
+ expect("at least two operands");
+ return;
+ }
+
+ if (ops[0].type != OP_REG32) {
+ expect("(destination operand) register");
+ return;
+ } else
+ operands |= ENCODE_RD(ops[0].reg);
+
+ if (nb_ops == 2) {
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_rrxseq:
+ opcode |= ENCODE_SET_CONDITION_CODES;
+ /* fallthrough */
+ case TOK_ASM_rrxeq:
+ if (ops[1].type == OP_REG32) {
+ operands |= ops[1].reg;
+ operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
+ asm_emit_opcode(token, opcode | operands);
+ } else
+ tcc_error("(first source operand) register");
+ return;
+ default:
+ memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
+ memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
+ nb_ops = 3;
+ }
+ }
+ if (nb_ops != 3) {
+ expect("two or three operands");
+ return;
+ }
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_lslseq:
+ case TOK_ASM_lsrseq:
+ case TOK_ASM_asrseq:
+ case TOK_ASM_rorseq:
+ opcode |= ENCODE_SET_CONDITION_CODES;
+ break;
+ }
+
+ switch (ops[1].type) {
+ case OP_REG32:
+ operands |= ops[1].reg;
+ break;
+ case OP_IM8:
+ operands |= ENCODE_IMMEDIATE_FLAG;
+ operands |= ops[1].e.v;
+ tcc_error("Using an immediate value as the source operand is not possible with '%s' instruction on ARM", get_tok_str(token, NULL));
+ return;
+ }
+
+ switch (ops[2].type) {
+ case OP_REG32:
+ if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
+ (ops[1].type == OP_REG32 && ops[1].reg == 15)) {
+ tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
+ }
+ operands |= asm_encode_shift(&ops[2]);
+ break;
+ case OP_IM8:
+ if (ops[2].e.v)
+ operands |= asm_encode_shift(&ops[2]);
+ else
+ definitely_neutral = 1;
+ break;
+ }
+
+ if (!definitely_neutral) switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_lslseq:
+ case TOK_ASM_lsleq:
+ operands |= ENCODE_BARREL_SHIFTER_MODE_LSL;
+ break;
+ case TOK_ASM_lsrseq:
+ case TOK_ASM_lsreq:
+ operands |= ENCODE_BARREL_SHIFTER_MODE_LSR;
+ break;
+ case TOK_ASM_asrseq:
+ case TOK_ASM_asreq:
+ operands |= ENCODE_BARREL_SHIFTER_MODE_ASR;
+ break;
+ case TOK_ASM_rorseq:
+ case TOK_ASM_roreq:
+ operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
+ break;
+ default:
+ expect("shift instruction");
+ return;
+ }
+ asm_emit_opcode(token, opcode | operands);
+}
+
+static void asm_multiplication_opcode(TCCState *s1, int token)
+{
+ Operand ops[4];
+ int nb_ops = 0;
+ uint32_t opcode = 0x90;
+
+ for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
+ parse_operand(s1, &ops[nb_ops]);
+ if (tok != ',') {
+ ++nb_ops;
+ break;
+ }
+ next(); // skip ','
+ }
+ if (nb_ops < 2)
+ expect("at least two operands");
+ else if (nb_ops == 2) {
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_mulseq:
+ case TOK_ASM_muleq:
+ memcpy(&ops[2], &ops[0], sizeof(ops[1])); // ARM is actually like this!
+ break;
+ default:
+ expect("at least three operands");
+ return;
+ }
+ nb_ops = 3;
+ }
+
+ // multiply (special case):
+ // operands:
+ // Rd: bits 19...16
+ // Rm: bits 3...0
+ // Rs: bits 11...8
+ // Rn: bits 15...12
+
+ if (ops[0].type == OP_REG32)
+ opcode |= ops[0].reg << 16;
+ else
+ expect("(destination operand) register");
+ if (ops[1].type == OP_REG32)
+ opcode |= ops[1].reg;
+ else
+ expect("(first source operand) register");
+ if (ops[2].type == OP_REG32)
+ opcode |= ops[2].reg << 8;
+ else
+ expect("(second source operand) register");
+ if (nb_ops > 3) {
+ if (ops[3].type == OP_REG32)
+ opcode |= ops[3].reg << 12;
+ else
+ expect("(third source operand) register");
+ }
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_mulseq:
+ opcode |= 1 << 20; // Status
+ /* fallthrough */
+ case TOK_ASM_muleq:
+ if (nb_ops != 3)
+ expect("three operands");
+ else {
+ asm_emit_opcode(token, opcode);
+ }
+ break;
+ case TOK_ASM_mlaseq:
+ opcode |= 1 << 20; // Status
+ /* fallthrough */
+ case TOK_ASM_mlaeq:
+ if (nb_ops != 4)
+ expect("four operands");
+ else {
+ opcode |= 1 << 21; // Accumulate
+ asm_emit_opcode(token, opcode);
+ }
+ break;
+ default:
+ expect("known multiplication instruction");
+ }
+}
+
+static void asm_long_multiplication_opcode(TCCState *s1, int token)
+{
+ Operand ops[4];
+ int nb_ops = 0;
+ uint32_t opcode = 0x90 | (1 << 23);
+
+ for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
+ parse_operand(s1, &ops[nb_ops]);
+ if (tok != ',') {
+ ++nb_ops;
+ break;
+ }
+ next(); // skip ','
+ }
+ if (nb_ops != 4) {
+ expect("four operands");
+ return;
+ }
+
+ // long multiply (special case):
+ // operands:
+ // RdLo: bits 15...12
+ // RdHi: bits 19...16
+ // Rs: bits 11...8
+ // Rm: bits 3...0
+
+ if (ops[0].type == OP_REG32)
+ opcode |= ops[0].reg << 12;
+ else
+ expect("(destination lo accumulator) register");
+ if (ops[1].type == OP_REG32)
+ opcode |= ops[1].reg << 16;
+ else
+ expect("(destination hi accumulator) register");
+ if (ops[2].type == OP_REG32)
+ opcode |= ops[2].reg;
+ else
+ expect("(first source operand) register");
+ if (ops[3].type == OP_REG32)
+ opcode |= ops[3].reg << 8;
+ else
+ expect("(second source operand) register");
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_smullseq:
+ opcode |= 1 << 20; // Status
+ /* fallthrough */
+ case TOK_ASM_smulleq:
+ opcode |= 1 << 22; // signed
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_umullseq:
+ opcode |= 1 << 20; // Status
+ /* fallthrough */
+ case TOK_ASM_umulleq:
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_smlalseq:
+ opcode |= 1 << 20; // Status
+ /* fallthrough */
+ case TOK_ASM_smlaleq:
+ opcode |= 1 << 22; // signed
+ opcode |= 1 << 21; // Accumulate
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_umlalseq:
+ opcode |= 1 << 20; // Status
+ /* fallthrough */
+ case TOK_ASM_umlaleq:
+ opcode |= 1 << 21; // Accumulate
+ asm_emit_opcode(token, opcode);
+ break;
+ default:
+ expect("known long multiplication instruction");
+ }
+}
+
+static void asm_single_data_transfer_opcode(TCCState *s1, int token)
+{
+ Operand ops[3];
+ Operand strex_operand;
+ Operand shift;
+ int nb_shift = 0;
+ int exclam = 0;
+ int closed_bracket = 0;
+ int op2_minus = 0;
+ uint32_t opcode = 0;
+ // Note: ldr r0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
+ // Note: ldr r0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
+ // Note: ldr r0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
+
+ parse_operand(s1, &ops[0]);
+ if (ops[0].type == OP_REG32)
+ opcode |= ENCODE_RD(ops[0].reg);
+ else {
+ expect("(destination operand) register");
+ return;
+ }
+ if (tok != ',')
+ expect("at least two arguments");
+ else
+ next(); // skip ','
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_strexbeq:
+ case TOK_ASM_strexeq:
+ parse_operand(s1, &strex_operand);
+ if (strex_operand.type != OP_REG32) {
+ expect("register");
+ return;
+ }
+ if (tok != ',')
+ expect("at least three arguments");
+ else
+ next(); // skip ','
+ break;
+ }
+
+ if (tok != '[')
+ expect("'['");
+ else
+ next(); // skip '['
+
+ parse_operand(s1, &ops[1]);
+ if (ops[1].type == OP_REG32)
+ opcode |= ENCODE_RN(ops[1].reg);
+ else {
+ expect("(first source operand) register");
+ return;
+ }
+ if (tok == ']') {
+ next();
+ closed_bracket = 1;
+ // exclam = 1; // implicit in hardware; don't do it in software
+ }
+ if (tok == ',') {
+ next(); // skip ','
+ if (tok == '-') {
+ op2_minus = 1;
+ next();
+ }
+ parse_operand(s1, &ops[2]);
+ if (ops[2].type == OP_REG32) {
+ if (ops[2].reg == 15) {
+ tcc_error("Using 'pc' for register offset in '%s' is not implemented by ARM", get_tok_str(token, NULL));
+ return;
+ }
+ if (tok == ',') {
+ next();
+ opcode |= asm_parse_optional_shift(s1, &nb_shift, &shift);
+ if (opcode == 0)
+ expect("shift directive, or no comma");
+ }
+ }
+ } else {
+ // end of input expression in brackets--assume 0 offset
+ ops[2].type = OP_IM8;
+ ops[2].e.v = 0;
+ opcode |= 1 << 24; // add offset before transfer
+ }
+ if (!closed_bracket) {
+ if (tok != ']')
+ expect("']'");
+ else
+ next(); // skip ']'
+ opcode |= 1 << 24; // add offset before transfer
+ if (tok == '!') {
+ exclam = 1;
+ next(); // skip '!'
+ }
+ }
+
+ // single data transfer: 0 1 I P U B W L << 20 (general case):
+ // operands:
+ // Rd: destination operand [ok]
+ // Rn: first source operand [ok]
+ // Operand2: bits 11...0 [ok]
+ // I: immediate operand? [ok]
+ // P: Pre/post indexing is PRE: Add offset before transfer [ok]
+ // U: Up/down is up? (*adds* offset to base) [ok]
+ // B: Byte/word is byte? [ok]
+ // W: Write address back into base? [ok]
+ // L: Load/store is load? [ok]
+ if (exclam)
+ opcode |= 1 << 21; // write offset back into register
+
+ if (ops[2].type == OP_IM32 || ops[2].type == OP_IM8 || ops[2].type == OP_IM8N) {
+ int v = ops[2].e.v;
+ if (op2_minus)
+ tcc_error("minus before '#' not supported for immediate values");
+ if (v >= 0) {
+ opcode |= 1 << 23; // up
+ if (v >= 0x1000)
+ tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
+ else
+ opcode |= v;
+ } else { // down
+ if (v <= -0x1000)
+ tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
+ else
+ opcode |= -v;
+ }
+ } else if (ops[2].type == OP_REG32) {
+ if (!op2_minus)
+ opcode |= 1 << 23; // up
+ opcode |= ENCODE_IMMEDIATE_FLAG; /* if set, it means it's NOT immediate */
+ opcode |= ops[2].reg;
+ } else
+ expect("register");
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_strbeq:
+ opcode |= 1 << 22; // B
+ /* fallthrough */
+ case TOK_ASM_streq:
+ opcode |= 1 << 26; // Load/Store
+ if (nb_shift)
+ opcode |= asm_encode_shift(&shift);
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_ldrbeq:
+ opcode |= 1 << 22; // B
+ /* fallthrough */
+ case TOK_ASM_ldreq:
+ opcode |= 1 << 20; // L
+ opcode |= 1 << 26; // Load/Store
+ if (nb_shift)
+ opcode |= asm_encode_shift(&shift);
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_strexbeq:
+ opcode |= 1 << 22; // B
+ /* fallthrough */
+ case TOK_ASM_strexeq:
+ if ((opcode & 0xFFF) || nb_shift) {
+ tcc_error("neither offset nor shift allowed with 'strex'");
+ return;
+ } else if (opcode & ENCODE_IMMEDIATE_FLAG) { // if set, it means it's NOT immediate
+ tcc_error("offset not allowed with 'strex'");
+ return;
+ }
+ if ((opcode & (1 << 24)) == 0) { // add offset after transfer
+ tcc_error("adding offset after transfer not allowed with 'strex'");
+ return;
+ }
+
+ opcode |= 0xf90; // Used to mean: barrel shifter is enabled, barrel shift register is r15, mode is LSL
+ opcode |= strex_operand.reg;
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_ldrexbeq:
+ opcode |= 1 << 22; // B
+ /* fallthrough */
+ case TOK_ASM_ldrexeq:
+ if ((opcode & 0xFFF) || nb_shift) {
+ tcc_error("neither offset nor shift allowed with 'ldrex'");
+ return;
+ } else if (opcode & ENCODE_IMMEDIATE_FLAG) { // if set, it means it's NOT immediate
+ tcc_error("offset not allowed with 'ldrex'");
+ return;
+ }
+ if ((opcode & (1 << 24)) == 0) { // add offset after transfer
+ tcc_error("adding offset after transfer not allowed with 'ldrex'");
+ return;
+ }
+ opcode |= 1 << 20; // L
+ opcode |= 0x00f;
+ opcode |= 0xf90; // Used to mean: barrel shifter is enabled, barrel shift register is r15, mode is LSL
+ asm_emit_opcode(token, opcode);
+ break;
+ default:
+ expect("data transfer instruction");
+ }
+}
+
+// Note: Only call this using a VFP register if you know exactly what you are doing (i.e. cp_number is 10 or 11 and you are doing a vmov)
+static void asm_emit_coprocessor_data_transfer(uint32_t high_nibble, uint8_t cp_number, uint8_t CRd, const Operand* Rn, const Operand* offset, int offset_minus, int preincrement, int writeback, int long_transfer, int load) {
+ uint32_t opcode = 0x0;
+ opcode |= 1 << 26; // Load/Store
+ opcode |= 1 << 27; // coprocessor
+
+ if (long_transfer)
+ opcode |= 1 << 22; // long transfer
+
+ if (load)
+ opcode |= 1 << 20; // L
+
+ opcode |= cp_number << 8;
+
+ //assert(CRd < 16);
+ opcode |= ENCODE_RD(CRd);
+
+ if (Rn->type != OP_REG32) {
+ expect("register");
+ return;
+ }
+ //assert(Rn->reg < 16);
+ opcode |= ENCODE_RN(Rn->reg);
+ if (preincrement)
+ opcode |= 1 << 24; // add offset before transfer
+
+ if (writeback)
+ opcode |= 1 << 21; // write offset back into register
+
+ if (offset->type == OP_IM8 || offset->type == OP_IM8N || offset->type == OP_IM32) {
+ int v = offset->e.v;
+ if (offset_minus)
+ tcc_error("minus before '#' not supported for immediate values");
+ if (offset->type == OP_IM8N || v < 0)
+ v = -v;
+ else
+ opcode |= 1 << 23; // up
+ if (v & 3) {
+ tcc_error("immediate offset must be a multiple of 4");
+ return;
+ }
+ v >>= 2;
+ if (v > 255) {
+ tcc_error("immediate offset must be between -1020 and 1020");
+ return;
+ }
+ opcode |= v;
+ } else if (offset->type == OP_REG32) {
+ if (!offset_minus)
+ opcode |= 1 << 23; // up
+ opcode |= ENCODE_IMMEDIATE_FLAG; /* if set, it means it's NOT immediate */
+ opcode |= offset->reg;
+ tcc_error("Using register offset to register address is not possible here");
+ return;
+ } else if (offset->type == OP_VREG64) {
+ opcode |= 16;
+ opcode |= offset->reg;
+ } else
+ expect("immediate or register");
+
+ asm_emit_unconditional_opcode((high_nibble << 28) | opcode);
+}
+
+// Almost exactly the same as asm_single_data_transfer_opcode.
+// Difference: Offsets are smaller and multiples of 4; no shifts, no STREX, ENCODE_IMMEDIATE_FLAG is inverted again.
+static void asm_coprocessor_data_transfer_opcode(TCCState *s1, int token)
+{
+ Operand ops[3];
+ uint8_t coprocessor;
+ uint8_t coprocessor_destination_register;
+ int preincrement = 0;
+ int exclam = 0;
+ int closed_bracket = 0;
+ int op2_minus = 0;
+ int long_transfer = 0;
+ // Note: ldc p1, c0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
+ // Note: ldc p2, c0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
+ // Note: ldc p3, c0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
+
+ if (tok >= TOK_ASM_p0 && tok <= TOK_ASM_p15) {
+ coprocessor = tok - TOK_ASM_p0;
+ next();
+ } else {
+ expect("'c<number>'");
+ return;
+ }
+
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+
+ if (tok >= TOK_ASM_c0 && tok <= TOK_ASM_c15) {
+ coprocessor_destination_register = tok - TOK_ASM_c0;
+ next();
+ } else {
+ expect("'c<number>'");
+ return;
+ }
+
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+
+ if (tok != '[')
+ expect("'['");
+ else
+ next(); // skip '['
+
+ parse_operand(s1, &ops[1]);
+ if (ops[1].type != OP_REG32) {
+ expect("(first source operand) register");
+ return;
+ }
+ if (tok == ']') {
+ next();
+ closed_bracket = 1;
+ // exclam = 1; // implicit in hardware; don't do it in software
+ }
+ if (tok == ',') {
+ next(); // skip ','
+ if (tok == '-') {
+ op2_minus = 1;
+ next();
+ }
+ parse_operand(s1, &ops[2]);
+ if (ops[2].type == OP_REG32) {
+ if (ops[2].reg == 15) {
+ tcc_error("Using 'pc' for register offset in '%s' is not implemented by ARM", get_tok_str(token, NULL));
+ return;
+ }
+ } else if (ops[2].type == OP_VREG64) {
+ tcc_error("'%s' does not support VFP register operand", get_tok_str(token, NULL));
+ return;
+ }
+ } else {
+ // end of input expression in brackets--assume 0 offset
+ ops[2].type = OP_IM8;
+ ops[2].e.v = 0;
+ preincrement = 1; // add offset before transfer
+ }
+ if (!closed_bracket) {
+ if (tok != ']')
+ expect("']'");
+ else
+ next(); // skip ']'
+ preincrement = 1; // add offset before transfer
+ if (tok == '!') {
+ exclam = 1;
+ next(); // skip '!'
+ }
+ }
+
+ // TODO: Support options.
+
+ if (token == TOK_ASM_ldc2 || token == TOK_ASM_stc2 || token == TOK_ASM_ldc2l || token == TOK_ASM_stc2l) {
+ switch (token) {
+ case TOK_ASM_ldc2l:
+ long_transfer = 1; // long transfer
+ /* fallthrough */
+ case TOK_ASM_ldc2:
+ asm_emit_coprocessor_data_transfer(0xF, coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 1);
+ break;
+ case TOK_ASM_stc2l:
+ long_transfer = 1; // long transfer
+ /* fallthrough */
+ case TOK_ASM_stc2:
+ asm_emit_coprocessor_data_transfer(0xF, coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 0);
+ break;
+ }
+ } else switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_stcleq:
+ long_transfer = 1;
+ /* fallthrough */
+ case TOK_ASM_stceq:
+ asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 0);
+ break;
+ case TOK_ASM_ldcleq:
+ long_transfer = 1;
+ /* fallthrough */
+ case TOK_ASM_ldceq:
+ asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 1);
+ break;
+ default:
+ expect("coprocessor data transfer instruction");
+ }
+}
+
+#if defined(TCC_ARM_VFP)
+#define CP_SINGLE_PRECISION_FLOAT 10
+#define CP_DOUBLE_PRECISION_FLOAT 11
+
+static void asm_floating_point_single_data_transfer_opcode(TCCState *s1, int token)
+{
+ Operand ops[3];
+ uint8_t coprocessor = 0;
+ uint8_t coprocessor_destination_register = 0;
+ int long_transfer = 0;
+ // Note: vldr p1, c0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
+ // Note: Not allowed: vldr p2, c0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
+ // Note: Not allowed: vldr p3, c0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
+
+ parse_operand(s1, &ops[0]);
+ if (ops[0].type == OP_VREG32) {
+ coprocessor = CP_SINGLE_PRECISION_FLOAT;
+ coprocessor_destination_register = ops[0].reg;
+ long_transfer = coprocessor_destination_register & 1;
+ coprocessor_destination_register >>= 1;
+ } else if (ops[0].type == OP_VREG64) {
+ coprocessor = CP_DOUBLE_PRECISION_FLOAT;
+ coprocessor_destination_register = ops[0].reg;
+ next();
+ } else {
+ expect("floating point register");
+ return;
+ }
+
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+
+ if (tok != '[')
+ expect("'['");
+ else
+ next(); // skip '['
+
+ parse_operand(s1, &ops[1]);
+ if (ops[1].type != OP_REG32) {
+ expect("(first source operand) register");
+ return;
+ }
+ if (tok == ',') {
+ next(); // skip ','
+ parse_operand(s1, &ops[2]);
+ if (ops[2].type != OP_IM8 && ops[2].type != OP_IM8N) {
+ expect("immediate offset");
+ return;
+ }
+ } else {
+ // end of input expression in brackets--assume 0 offset
+ ops[2].type = OP_IM8;
+ ops[2].e.v = 0;
+ }
+ if (tok != ']')
+ expect("']'");
+ else
+ next(); // skip ']'
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vldreq:
+ asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], 0, 1, 0, long_transfer, 1);
+ break;
+ case TOK_ASM_vstreq:
+ asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], 0, 1, 0, long_transfer, 0);
+ break;
+ default:
+ expect("floating point data transfer instruction");
+ }
+}
+
+static void asm_floating_point_block_data_transfer_opcode(TCCState *s1, int token)
+{
+ uint8_t coprocessor = 0;
+ int first_regset_register;
+ int last_regset_register;
+ uint8_t regset_item_count;
+ uint8_t extra_register_bit = 0;
+ int op0_exclam = 0;
+ int load = 0;
+ int preincrement = 0;
+ Operand ops[1];
+ Operand offset;
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vpusheq:
+ case TOK_ASM_vpopeq:
+ ops[0].type = OP_REG32;
+ ops[0].reg = 13; // sp
+ op0_exclam = 1;
+ break;
+ default:
+ parse_operand(s1, &ops[0]);
+ if (tok == '!') {
+ op0_exclam = 1;
+ next(); // skip '!'
+ }
+ if (tok == ',')
+ next(); // skip comma
+ else {
+ expect("','");
+ return;
+ }
+ }
+
+ if (tok != '{') {
+ expect("'{'");
+ return;
+ }
+ next(); // skip '{'
+ first_regset_register = asm_parse_vfp_regvar(tok, 1);
+ if ((first_regset_register = asm_parse_vfp_regvar(tok, 1)) != -1) {
+ coprocessor = CP_DOUBLE_PRECISION_FLOAT;
+ next();
+ } else if ((first_regset_register = asm_parse_vfp_regvar(tok, 0)) != -1) {
+ coprocessor = CP_SINGLE_PRECISION_FLOAT;
+ next();
+ } else {
+ expect("floating-point register");
+ return;
+ }
+
+ if (tok == '-') {
+ next();
+ if ((last_regset_register = asm_parse_vfp_regvar(tok, coprocessor == CP_DOUBLE_PRECISION_FLOAT)) != -1)
+ next();
+ else {
+ expect("floating-point register");
+ return;
+ }
+ } else
+ last_regset_register = first_regset_register;
+
+ if (last_regset_register < first_regset_register) {
+ tcc_error("registers will be processed in ascending order by hardware--but are not specified in ascending order here");
+ return;
+ }
+ if (tok != '}') {
+ expect("'}'");
+ return;
+ }
+ next(); // skip '}'
+
+ // Note: 0 (one down) is not implemented by us regardless.
+ regset_item_count = last_regset_register - first_regset_register + 1;
+ if (coprocessor == CP_DOUBLE_PRECISION_FLOAT)
+ regset_item_count <<= 1;
+ else {
+ extra_register_bit = first_regset_register & 1;
+ first_regset_register >>= 1;
+ }
+ offset.type = OP_IM8;
+ offset.e.v = regset_item_count << 2;
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vstmeq: // post-increment store
+ case TOK_ASM_vstmiaeq: // post-increment store
+ break;
+ case TOK_ASM_vpopeq:
+ case TOK_ASM_vldmeq: // post-increment load
+ case TOK_ASM_vldmiaeq: // post-increment load
+ load = 1;
+ break;
+ case TOK_ASM_vldmdbeq: // pre-decrement load
+ load = 1;
+ /* fallthrough */
+ case TOK_ASM_vpusheq:
+ case TOK_ASM_vstmdbeq: // pre-decrement store
+ offset.type = OP_IM8N;
+ offset.e.v = -offset.e.v;
+ preincrement = 1;
+ break;
+ default:
+ expect("floating point block data transfer instruction");
+ return;
+ }
+ if (ops[0].type != OP_REG32)
+ expect("(first operand) register");
+ else if (ops[0].reg == 15)
+ tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
+ else if (!op0_exclam && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vldmeq && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vldmiaeq && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vstmeq && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vstmiaeq)
+ tcc_error("first operand of '%s' should have an exclamation mark", get_tok_str(token, NULL));
+ else
+ asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, first_regset_register, &ops[0], &offset, 0, preincrement, op0_exclam, extra_register_bit, load);
+}
+
+#define VMOV_FRACTIONAL_DIGITS 7
+#define VMOV_ONE 10000000 /* pow(10, VMOV_FRACTIONAL_DIGITS) */
+
+static uint32_t vmov_parse_fractional_part(const char* s)
+{
+ uint32_t result = 0;
+ int i;
+ for (i = 0; i < VMOV_FRACTIONAL_DIGITS; ++i) {
+ char c = *s;
+ result *= 10;
+ if (c >= '0' && c <= '9') {
+ result += (c - '0');
+ ++s;
+ }
+ }
+ if (*s)
+ expect("decimal numeral");
+ return result;
+}
+
+static int vmov_linear_approx_index(uint32_t beginning, uint32_t end, uint32_t value)
+{
+ int i;
+ uint32_t k;
+ uint32_t xvalue;
+
+ k = (end - beginning)/16;
+ for (xvalue = beginning, i = 0; i < 16; ++i, xvalue += k) {
+ if (value == xvalue)
+ return i;
+ }
+ //assert(0);
+ return -1;
+}
+
+static uint32_t vmov_parse_immediate_value() {
+ uint32_t value;
+ unsigned long integral_value;
+ const char *p;
+
+ if (tok != TOK_PPNUM) {
+ expect("immediate value");
+ return 0;
+ }
+ p = tokc.str.data;
+ errno = 0;
+ integral_value = strtoul(p, (char **)&p, 0);
+
+ if (errno || integral_value >= 32) {
+ tcc_error("invalid floating-point immediate value");
+ return 0;
+ }
+
+ value = (uint32_t) integral_value * VMOV_ONE;
+ if (*p == '.') {
+ ++p;
+ value += vmov_parse_fractional_part(p);
+ }
+ next();
+ return value;
+}
+
+static uint8_t vmov_encode_immediate_value(uint32_t value)
+{
+ uint32_t limit;
+ uint32_t end = 0;
+ uint32_t beginning = 0;
+ int r = -1;
+ int n;
+ int i;
+
+ limit = 32 * VMOV_ONE;
+ for (i = 0; i < 8; ++i) {
+ if (value < limit) {
+ end = limit;
+ limit >>= 1;
+ beginning = limit;
+ r = i;
+ } else
+ limit >>= 1;
+ }
+ if (r == -1 || value < beginning || value > end) {
+ tcc_error("invalid decimal number for vmov: %d", value);
+ return 0;
+ }
+ n = vmov_linear_approx_index(beginning, end, value);
+ return n | (((3 - r) & 0x7) << 4);
+}
+
+// Not standalone.
+static void asm_floating_point_immediate_data_processing_opcode_tail(TCCState *s1, int token, uint8_t coprocessor, uint8_t CRd) {
+ uint8_t opcode1 = 0;
+ uint8_t opcode2 = 0;
+ uint8_t operands[3] = {0, 0, 0};
+ uint32_t immediate_value = 0;
+ int op_minus = 0;
+ uint8_t code;
+
+ operands[0] = CRd;
+
+ if (tok == '#' || tok == '$') {
+ next();
+ }
+ if (tok == '-') {
+ op_minus = 1;
+ next();
+ }
+ immediate_value = vmov_parse_immediate_value();
+
+ opcode1 = 11; // "Other" instruction
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vcmpeq_f32:
+ case TOK_ASM_vcmpeq_f64:
+ opcode2 = 2;
+ operands[1] = 5;
+ if (immediate_value) {
+ expect("Immediate value 0");
+ return;
+ }
+ break;
+ case TOK_ASM_vcmpeeq_f32:
+ case TOK_ASM_vcmpeeq_f64:
+ opcode2 = 6;
+ operands[1] = 5;
+ if (immediate_value) {
+ expect("Immediate value 0");
+ return;
+ }
+ break;
+ case TOK_ASM_vmoveq_f32:
+ case TOK_ASM_vmoveq_f64:
+ opcode2 = 0;
+ if (op_minus)
+ operands[1] = 0x8;
+ else
+ operands[1] = 0x0;
+ code = vmov_encode_immediate_value(immediate_value);
+ operands[1] |= code >> 4;
+ operands[2] = code & 0xF;
+ break;
+ default:
+ expect("known floating point with immediate instruction");
+ return;
+ }
+
+ if (coprocessor == CP_SINGLE_PRECISION_FLOAT) {
+ if (operands[0] & 1)
+ opcode1 |= 4;
+ operands[0] >>= 1;
+ }
+
+ asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, operands[0], operands[1], operands[2], opcode2, 0);
+}
+
+static void asm_floating_point_reg_arm_reg_transfer_opcode_tail(TCCState *s1, int token, int coprocessor, int nb_arm_regs, int nb_ops, Operand ops[3]) {
+ uint8_t opcode1 = 0;
+ uint8_t opcode2 = 0;
+ switch (coprocessor) {
+ case CP_SINGLE_PRECISION_FLOAT:
+ // "vmov.f32 r2, s3" or "vmov.f32 s3, r2"
+ if (nb_ops != 2 || nb_arm_regs != 1) {
+ tcc_error("vmov.f32 only implemented for one VFP register operand and one ARM register operands");
+ return;
+ }
+ if (ops[0].type != OP_REG32) { // determine mode: load or store
+ // need to swap operands 0 and 1
+ memcpy(&ops[2], &ops[1], sizeof(ops[2]));
+ memcpy(&ops[1], &ops[0], sizeof(ops[1]));
+ memcpy(&ops[0], &ops[2], sizeof(ops[0]));
+ } else
+ opcode1 |= 1;
+
+ if (ops[1].type == OP_VREG32) {
+ if (ops[1].reg & 1)
+ opcode2 |= 4;
+ ops[1].reg >>= 1;
+ }
+
+ if (ops[0].type == OP_VREG32) {
+ if (ops[0].reg & 1)
+ opcode1 |= 4;
+ ops[0].reg >>= 1;
+ }
+
+ asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, ops[0].reg, (ops[1].type == OP_IM8) ? ops[1].e.v : ops[1].reg, 0x10, opcode2, 0);
+ break;
+ case CP_DOUBLE_PRECISION_FLOAT:
+ if (nb_ops != 3 || nb_arm_regs != 2) {
+ tcc_error("vmov.f32 only implemented for one VFP register operand and two ARM register operands");
+ return;
+ }
+ // Determine whether it's a store into a VFP register (vmov "d1, r2, r3") rather than "vmov r2, r3, d1"
+ if (ops[0].type == OP_VREG64) {
+ if (ops[2].type == OP_REG32) {
+ Operand temp;
+ // need to rotate operand list to the left
+ memcpy(&temp, &ops[0], sizeof(temp));
+ memcpy(&ops[0], &ops[1], sizeof(ops[0]));
+ memcpy(&ops[1], &ops[2], sizeof(ops[1]));
+ memcpy(&ops[2], &temp, sizeof(ops[2]));
+ } else {
+ tcc_error("vmov.f64 only implemented for one VFP register operand and two ARM register operands");
+ return;
+ }
+ } else if (ops[0].type != OP_REG32 || ops[1].type != OP_REG32 || ops[2].type != OP_VREG64) {
+ tcc_error("vmov.f64 only implemented for one VFP register operand and two ARM register operands");
+ return;
+ } else {
+ opcode1 |= 1;
+ }
+ asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, ops[0].reg, &ops[1], &ops[2], 0, 0, 0, 1, opcode1);
+ break;
+ default:
+ tcc_internal_error("unknown coprocessor");
+ }
+}
+
+static void asm_floating_point_vcvt_data_processing_opcode(TCCState *s1, int token) {
+ uint8_t coprocessor = 0;
+ Operand ops[3];
+ uint8_t opcode1 = 11;
+ uint8_t opcode2 = 2;
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vcvtreq_s32_f64:
+ case TOK_ASM_vcvtreq_u32_f64:
+ case TOK_ASM_vcvteq_s32_f64:
+ case TOK_ASM_vcvteq_u32_f64:
+ case TOK_ASM_vcvteq_f64_s32:
+ case TOK_ASM_vcvteq_f64_u32:
+ case TOK_ASM_vcvteq_f32_f64:
+ coprocessor = CP_DOUBLE_PRECISION_FLOAT;
+ break;
+ case TOK_ASM_vcvtreq_s32_f32:
+ case TOK_ASM_vcvtreq_u32_f32:
+ case TOK_ASM_vcvteq_s32_f32:
+ case TOK_ASM_vcvteq_u32_f32:
+ case TOK_ASM_vcvteq_f32_s32:
+ case TOK_ASM_vcvteq_f32_u32:
+ case TOK_ASM_vcvteq_f64_f32:
+ coprocessor = CP_SINGLE_PRECISION_FLOAT;
+ break;
+ default:
+ tcc_error("Unknown coprocessor for instruction '%s'", get_tok_str(token, NULL));
+ return;
+ }
+
+ parse_operand(s1, &ops[0]);
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 8;
+ /* floating-point -> integer */
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vcvtreq_s32_f32:
+ case TOK_ASM_vcvtreq_s32_f64:
+ case TOK_ASM_vcvteq_s32_f32:
+ case TOK_ASM_vcvteq_s32_f64:
+ ops[1].e.v |= 1; // signed
+ /* fall through */
+ case TOK_ASM_vcvteq_u32_f32:
+ case TOK_ASM_vcvteq_u32_f64:
+ case TOK_ASM_vcvtreq_u32_f32:
+ case TOK_ASM_vcvtreq_u32_f64:
+ ops[1].e.v |= 4; // to_integer (opc2)
+ break;
+ /* floating-point size conversion */
+ case TOK_ASM_vcvteq_f64_f32:
+ case TOK_ASM_vcvteq_f32_f64:
+ ops[1].e.v = 7;
+ break;
+ }
+
+ if (tok == ',')
+ next();
+ else
+ expect("','");
+ parse_operand(s1, &ops[2]);
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ /* floating-point -> integer */
+ case TOK_ASM_vcvteq_s32_f32:
+ case TOK_ASM_vcvteq_s32_f64:
+ case TOK_ASM_vcvteq_u32_f32:
+ case TOK_ASM_vcvteq_u32_f64:
+ opcode2 |= 4; // round_zero
+ break;
+
+ /* integer -> floating-point */
+ case TOK_ASM_vcvteq_f64_s32:
+ case TOK_ASM_vcvteq_f32_s32:
+ opcode2 |= 4; // signed--special
+ break;
+
+ /* floating-point size conversion */
+ case TOK_ASM_vcvteq_f64_f32:
+ case TOK_ASM_vcvteq_f32_f64:
+ opcode2 |= 4; // always set
+ break;
+ }
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vcvteq_f64_u32:
+ case TOK_ASM_vcvteq_f64_s32:
+ case TOK_ASM_vcvteq_f64_f32:
+ if (ops[0].type == OP_VREG64 && ops[2].type == OP_VREG32) {
+ } else {
+ expect("d<number>, s<number>");
+ return;
+ }
+ break;
+ default:
+ if (coprocessor == CP_SINGLE_PRECISION_FLOAT) {
+ if (ops[0].type == OP_VREG32 && ops[2].type == OP_VREG32) {
+ } else {
+ expect("s<number>, s<number>");
+ return;
+ }
+ } else if (coprocessor == CP_DOUBLE_PRECISION_FLOAT) {
+ if (ops[0].type == OP_VREG32 && ops[2].type == OP_VREG64) {
+ } else {
+ expect("s<number>, d<number>");
+ return;
+ }
+ }
+ }
+
+ if (ops[2].type == OP_VREG32) {
+ if (ops[2].reg & 1)
+ opcode2 |= 1;
+ ops[2].reg >>= 1;
+ }
+ if (ops[0].type == OP_VREG32) {
+ if (ops[0].reg & 1)
+ opcode1 |= 4;
+ ops[0].reg >>= 1;
+ }
+ asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, ops[0].reg, (ops[1].type == OP_IM8) ? ops[1].e.v : ops[1].reg, (ops[2].type == OP_IM8) ? ops[2].e.v : ops[2].reg, opcode2, 0);
+}
+
+static void asm_floating_point_data_processing_opcode(TCCState *s1, int token) {
+ uint8_t coprocessor = CP_SINGLE_PRECISION_FLOAT;
+ uint8_t opcode1 = 0;
+ uint8_t opcode2 = 0; // (0 || 2) | register selection
+ Operand ops[3];
+ uint8_t nb_ops = 0;
+ int vmov = 0;
+ int nb_arm_regs = 0;
+
+/* TODO:
+ Instruction opcode opcode2 Reason
+ =============================================================
+ - 1?00 ?1? Undefined
+ VFNMS 1?01 ?0? Must be unconditional
+ VFNMA 1?01 ?1? Must be unconditional
+ VFMA 1?10 ?0? Must be unconditional
+ VFMS 1?10 ?1? Must be unconditional
+
+ VMOV Fd, Fm
+ VMOV Sn, Sm, Rd, Rn
+ VMOV Rd, Rn, Sn, Sm
+ VMOV Dn[0], Rd
+ VMOV Rd, Dn[0]
+ VMOV Dn[1], Rd
+ VMOV Rd, Dn[1]
+*/
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vmlaeq_f64:
+ case TOK_ASM_vmlseq_f64:
+ case TOK_ASM_vnmlseq_f64:
+ case TOK_ASM_vnmlaeq_f64:
+ case TOK_ASM_vmuleq_f64:
+ case TOK_ASM_vnmuleq_f64:
+ case TOK_ASM_vaddeq_f64:
+ case TOK_ASM_vsubeq_f64:
+ case TOK_ASM_vdiveq_f64:
+ case TOK_ASM_vnegeq_f64:
+ case TOK_ASM_vabseq_f64:
+ case TOK_ASM_vsqrteq_f64:
+ case TOK_ASM_vcmpeq_f64:
+ case TOK_ASM_vcmpeeq_f64:
+ case TOK_ASM_vmoveq_f64:
+ coprocessor = CP_DOUBLE_PRECISION_FLOAT;
+ }
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vmoveq_f32:
+ case TOK_ASM_vmoveq_f64:
+ vmov = 1;
+ break;
+ }
+
+ for (nb_ops = 0; nb_ops < 3; ) {
+ // Note: Necessary because parse_operand can't parse decimal numerals.
+ if (nb_ops == 1 && (tok == '#' || tok == '$' || tok == TOK_PPNUM || tok == '-')) {
+ asm_floating_point_immediate_data_processing_opcode_tail(s1, token, coprocessor, ops[0].reg);
+ return;
+ }
+ parse_operand(s1, &ops[nb_ops]);
+ if (vmov && ops[nb_ops].type == OP_REG32) {
+ ++nb_arm_regs;
+ } else if (ops[nb_ops].type == OP_VREG32) {
+ if (coprocessor != CP_SINGLE_PRECISION_FLOAT) {
+ expect("'s<number>'");
+ return;
+ }
+ } else if (ops[nb_ops].type == OP_VREG64) {
+ if (coprocessor != CP_DOUBLE_PRECISION_FLOAT) {
+ expect("'d<number>'");
+ return;
+ }
+ } else {
+ expect("floating point register");
+ return;
+ }
+ ++nb_ops;
+ if (tok == ',')
+ next();
+ else
+ break;
+ }
+
+ if (nb_arm_regs == 0) {
+ if (nb_ops == 2) { // implicit
+ memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
+ memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
+ nb_ops = 3;
+ }
+ if (nb_ops < 3) {
+ tcc_error("Not enough operands for '%s' (%u)", get_tok_str(token, NULL), nb_ops);
+ return;
+ }
+ }
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vmlaeq_f32:
+ case TOK_ASM_vmlaeq_f64:
+ opcode1 = 0;
+ opcode2 = 0;
+ break;
+ case TOK_ASM_vmlseq_f32:
+ case TOK_ASM_vmlseq_f64:
+ opcode1 = 0;
+ opcode2 = 2;
+ break;
+ case TOK_ASM_vnmlseq_f32:
+ case TOK_ASM_vnmlseq_f64:
+ opcode1 = 1;
+ opcode2 = 0;
+ break;
+ case TOK_ASM_vnmlaeq_f32:
+ case TOK_ASM_vnmlaeq_f64:
+ opcode1 = 1;
+ opcode2 = 2;
+ break;
+ case TOK_ASM_vmuleq_f32:
+ case TOK_ASM_vmuleq_f64:
+ opcode1 = 2;
+ opcode2 = 0;
+ break;
+ case TOK_ASM_vnmuleq_f32:
+ case TOK_ASM_vnmuleq_f64:
+ opcode1 = 2;
+ opcode2 = 2;
+ break;
+ case TOK_ASM_vaddeq_f32:
+ case TOK_ASM_vaddeq_f64:
+ opcode1 = 3;
+ opcode2 = 0;
+ break;
+ case TOK_ASM_vsubeq_f32:
+ case TOK_ASM_vsubeq_f64:
+ opcode1 = 3;
+ opcode2 = 2;
+ break;
+ case TOK_ASM_vdiveq_f32:
+ case TOK_ASM_vdiveq_f64:
+ opcode1 = 8;
+ opcode2 = 0;
+ break;
+ case TOK_ASM_vnegeq_f32:
+ case TOK_ASM_vnegeq_f64:
+ opcode1 = 11; // Other" instruction
+ opcode2 = 2;
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 1;
+ break;
+ case TOK_ASM_vabseq_f32:
+ case TOK_ASM_vabseq_f64:
+ opcode1 = 11; // "Other" instruction
+ opcode2 = 6;
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 0;
+ break;
+ case TOK_ASM_vsqrteq_f32:
+ case TOK_ASM_vsqrteq_f64:
+ opcode1 = 11; // "Other" instruction
+ opcode2 = 6;
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 1;
+ break;
+ case TOK_ASM_vcmpeq_f32:
+ case TOK_ASM_vcmpeq_f64:
+ opcode1 = 11; // "Other" instruction
+ opcode2 = 2;
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 4;
+ break;
+ case TOK_ASM_vcmpeeq_f32:
+ case TOK_ASM_vcmpeeq_f64:
+ opcode1 = 11; // "Other" instruction
+ opcode2 = 6;
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 4;
+ break;
+ case TOK_ASM_vmoveq_f32:
+ case TOK_ASM_vmoveq_f64:
+ if (nb_arm_regs > 0) { // vmov.f32 r2, s3 or similar
+ asm_floating_point_reg_arm_reg_transfer_opcode_tail(s1, token, coprocessor, nb_arm_regs, nb_ops, ops);
+ return;
+ } else {
+ opcode1 = 11; // "Other" instruction
+ opcode2 = 2;
+ ops[1].type = OP_IM8;
+ ops[1].e.v = 0;
+ }
+ break;
+ default:
+ expect("known floating point instruction");
+ return;
+ }
+
+ if (coprocessor == CP_SINGLE_PRECISION_FLOAT) {
+ if (ops[2].type == OP_VREG32) {
+ if (ops[2].reg & 1)
+ opcode2 |= 1;
+ ops[2].reg >>= 1;
+ }
+
+ if (ops[1].type == OP_VREG32) {
+ if (ops[1].reg & 1)
+ opcode2 |= 4;
+ ops[1].reg >>= 1;
+ }
+
+ if (ops[0].type == OP_VREG32) {
+ if (ops[0].reg & 1)
+ opcode1 |= 4;
+ ops[0].reg >>= 1;
+ }
+ }
+
+ asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, ops[0].reg, (ops[1].type == OP_IM8) ? ops[1].e.v : ops[1].reg, (ops[2].type == OP_IM8) ? ops[2].e.v : ops[2].reg, opcode2, 0);
+}
+
+static int asm_parse_vfp_status_regvar(int t)
+{
+ switch (t) {
+ case TOK_ASM_fpsid:
+ return 0;
+ case TOK_ASM_fpscr:
+ return 1;
+ case TOK_ASM_fpexc:
+ return 8;
+ default:
+ return -1;
+ }
+}
+
+static void asm_floating_point_status_register_opcode(TCCState* s1, int token)
+{
+ uint8_t coprocessor = CP_SINGLE_PRECISION_FLOAT;
+ uint8_t opcode;
+ int vfp_sys_reg = -1;
+ Operand arm_operand;
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_vmrseq:
+ opcode = 0xf;
+ if (tok == TOK_ASM_apsr_nzcv) {
+ arm_operand.type = OP_REG32;
+ arm_operand.reg = 15; // not PC
+ next(); // skip apsr_nzcv
+ } else {
+ parse_operand(s1, &arm_operand);
+ if (arm_operand.type == OP_REG32 && arm_operand.reg == 15) {
+ tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
+ return;
+ }
+ }
+
+ if (tok != ',')
+ expect("','");
+ else
+ next(); // skip ','
+ vfp_sys_reg = asm_parse_vfp_status_regvar(tok);
+ next(); // skip vfp sys reg
+ if (arm_operand.type == OP_REG32 && arm_operand.reg == 15 && vfp_sys_reg != 1) {
+ tcc_error("'%s' only supports the variant 'vmrs apsr_nzcv, fpscr' here", get_tok_str(token, NULL));
+ return;
+ }
+ break;
+ case TOK_ASM_vmsreq:
+ opcode = 0xe;
+ vfp_sys_reg = asm_parse_vfp_status_regvar(tok);
+ next(); // skip vfp sys reg
+ if (tok != ',')
+ expect("','");
+ else
+ next(); // skip ','
+ parse_operand(s1, &arm_operand);
+ if (arm_operand.type == OP_REG32 && arm_operand.reg == 15) {
+ tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
+ return;
+ }
+ break;
+ default:
+ expect("floating point status register instruction");
+ return;
+ }
+ if (vfp_sys_reg == -1) {
+ expect("VFP system register");
+ return;
+ }
+ if (arm_operand.type != OP_REG32) {
+ expect("ARM register");
+ return;
+ }
+ asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode, arm_operand.reg, vfp_sys_reg, 0x10, 0, 0);
+}
+
+#endif
+
+static void asm_misc_single_data_transfer_opcode(TCCState *s1, int token)
+{
+ Operand ops[3];
+ int exclam = 0;
+ int closed_bracket = 0;
+ int op2_minus = 0;
+ uint32_t opcode = (1 << 7) | (1 << 4);
+
+ /* Note:
+ The argument syntax is exactly the same as in arm_single_data_transfer_opcode, except that there's no STREX argument form.
+ The main difference between this function and asm_misc_single_data_transfer_opcode is that the immediate values here must be smaller.
+ Also, the combination (P=0, W=1) is unpredictable here.
+ The immediate flag has moved to bit index 22--and its meaning has flipped.
+ The immediate value itself has been split into two parts: one at bits 11...8, one at bits 3...0
+ bit 26 (Load/Store instruction) is unset here.
+ bits 7 and 4 are set here. */
+
+ // Here: 0 0 0 P U I W L << 20
+ // [compare single data transfer: 0 1 I P U B W L << 20]
+
+ parse_operand(s1, &ops[0]);
+ if (ops[0].type == OP_REG32)
+ opcode |= ENCODE_RD(ops[0].reg);
+ else {
+ expect("(destination operand) register");
+ return;
+ }
+ if (tok != ',')
+ expect("at least two arguments");
+ else
+ next(); // skip ','
+
+ if (tok != '[')
+ expect("'['");
+ else
+ next(); // skip '['
+
+ parse_operand(s1, &ops[1]);
+ if (ops[1].type == OP_REG32)
+ opcode |= ENCODE_RN(ops[1].reg);
+ else {
+ expect("(first source operand) register");
+ return;
+ }
+ if (tok == ']') {
+ next();
+ closed_bracket = 1;
+ // exclam = 1; // implicit in hardware; don't do it in software
+ }
+ if (tok == ',') {
+ next(); // skip ','
+ if (tok == '-') {
+ op2_minus = 1;
+ next();
+ }
+ parse_operand(s1, &ops[2]);
+ } else {
+ // end of input expression in brackets--assume 0 offset
+ ops[2].type = OP_IM8;
+ ops[2].e.v = 0;
+ opcode |= 1 << 24; // add offset before transfer
+ }
+ if (!closed_bracket) {
+ if (tok != ']')
+ expect("']'");
+ else
+ next(); // skip ']'
+ opcode |= 1 << 24; // add offset before transfer
+ if (tok == '!') {
+ exclam = 1;
+ next(); // skip '!'
+ }
+ }
+
+ if (exclam) {
+ if ((opcode & (1 << 24)) == 0) {
+ tcc_error("result of '%s' would be unpredictable here", get_tok_str(token, NULL));
+ return;
+ }
+ opcode |= 1 << 21; // write offset back into register
+ }
+
+ if (ops[2].type == OP_IM32 || ops[2].type == OP_IM8 || ops[2].type == OP_IM8N) {
+ int v = ops[2].e.v;
+ if (op2_minus)
+ tcc_error("minus before '#' not supported for immediate values");
+ if (v >= 0) {
+ opcode |= 1 << 23; // up
+ if (v >= 0x100)
+ tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
+ else {
+ // bits 11...8: immediate hi nibble
+ // bits 3...0: immediate lo nibble
+ opcode |= (v & 0xF0) << 4;
+ opcode |= v & 0xF;
+ }
+ } else { // down
+ if (v <= -0x100)
+ tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
+ else {
+ v = -v;
+ // bits 11...8: immediate hi nibble
+ // bits 3...0: immediate lo nibble
+ opcode |= (v & 0xF0) << 4;
+ opcode |= v & 0xF;
+ }
+ }
+ opcode |= 1 << 22; // not ENCODE_IMMEDIATE_FLAG;
+ } else if (ops[2].type == OP_REG32) {
+ if (!op2_minus)
+ opcode |= 1 << 23; // up
+ opcode |= ops[2].reg;
+ } else
+ expect("register");
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_ldrsheq:
+ opcode |= 1 << 5; // halfword, not byte
+ /* fallthrough */
+ case TOK_ASM_ldrsbeq:
+ opcode |= 1 << 6; // sign extend
+ opcode |= 1 << 20; // L
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_ldrheq:
+ opcode |= 1 << 5; // halfword, not byte
+ opcode |= 1 << 20; // L
+ asm_emit_opcode(token, opcode);
+ break;
+ case TOK_ASM_strheq:
+ opcode |= 1 << 5; // halfword, not byte
+ asm_emit_opcode(token, opcode);
+ break;
+ }
+}
+
+/* Note: almost dupe of encbranch in arm-gen.c */
+static uint32_t encbranchoffset(int pos, int addr, int fail)
+{
+ addr-=pos+8;
+ addr/=4;
+ if(addr>=0x7fffff || addr<-0x800000) {
+ if(fail)
+ tcc_error("branch offset is too far");
+ return 0;
+ }
+ return /*not 0x0A000000|*/(addr&0xffffff);
+}
+
+static void asm_branch_opcode(TCCState *s1, int token)
+{
+ int jmp_disp = 0;
+ Operand op;
+ ExprValue e;
+ ElfSym *esym;
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_beq:
+ case TOK_ASM_bleq:
+ asm_expr(s1, &e);
+ esym = elfsym(e.sym);
+ if (!esym || esym->st_shndx != cur_text_section->sh_num) {
+ tcc_error("invalid branch target");
+ return;
+ }
+ jmp_disp = encbranchoffset(ind, e.v + esym->st_value, 1);
+ break;
+ default:
+ parse_operand(s1, &op);
+ break;
+ }
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_beq:
+ asm_emit_opcode(token, (0xa << 24) | (jmp_disp & 0xffffff));
+ break;
+ case TOK_ASM_bleq:
+ asm_emit_opcode(token, (0xb << 24) | (jmp_disp & 0xffffff));
+ break;
+ case TOK_ASM_bxeq:
+ if (op.type != OP_REG32)
+ expect("register");
+ else
+ asm_emit_opcode(token, (0x12fff1 << 4) | op.reg);
+ break;
+ case TOK_ASM_blxeq:
+ if (op.type != OP_REG32)
+ expect("register");
+ else
+ asm_emit_opcode(token, (0x12fff3 << 4) | op.reg);
+ break;
+ default:
+ expect("branch instruction");
+ }
+}
+
+ST_FUNC void asm_opcode(TCCState *s1, int token)
+{
+ while (token == TOK_LINEFEED) {
+ next();
+ token = tok;
+ }
+ if (token == TOK_EOF)
+ return;
+ if (token < TOK_ASM_nopeq) { // no condition code
+ switch (token) {
+ case TOK_ASM_cdp2:
+ asm_coprocessor_opcode(s1, token);
+ return;
+ case TOK_ASM_ldc2:
+ case TOK_ASM_ldc2l:
+ case TOK_ASM_stc2:
+ case TOK_ASM_stc2l:
+ asm_coprocessor_data_transfer_opcode(s1, token);
+ return;
+ default:
+ expect("instruction");
+ return;
+ }
+ }
+
+ switch (ARM_INSTRUCTION_GROUP(token)) {
+ case TOK_ASM_pusheq:
+ case TOK_ASM_popeq:
+ case TOK_ASM_stmdaeq:
+ case TOK_ASM_ldmdaeq:
+ case TOK_ASM_stmeq:
+ case TOK_ASM_ldmeq:
+ case TOK_ASM_stmiaeq:
+ case TOK_ASM_ldmiaeq:
+ case TOK_ASM_stmdbeq:
+ case TOK_ASM_ldmdbeq:
+ case TOK_ASM_stmibeq:
+ case TOK_ASM_ldmibeq:
+ asm_block_data_transfer_opcode(s1, token);
+ return;
+ case TOK_ASM_nopeq:
+ case TOK_ASM_wfeeq:
+ case TOK_ASM_wfieq:
+ asm_nullary_opcode(token);
+ return;
+ case TOK_ASM_swieq:
+ case TOK_ASM_svceq:
+ asm_unary_opcode(s1, token);
+ return;
+ case TOK_ASM_beq:
+ case TOK_ASM_bleq:
+ case TOK_ASM_bxeq:
+ case TOK_ASM_blxeq:
+ asm_branch_opcode(s1, token);
+ return;
+ case TOK_ASM_clzeq:
+ case TOK_ASM_sxtbeq:
+ case TOK_ASM_sxtheq:
+ case TOK_ASM_uxtbeq:
+ case TOK_ASM_uxtheq:
+ case TOK_ASM_movteq:
+ case TOK_ASM_movweq:
+ asm_binary_opcode(s1, token);
+ return;
+
+ case TOK_ASM_ldreq:
+ case TOK_ASM_ldrbeq:
+ case TOK_ASM_streq:
+ case TOK_ASM_strbeq:
+ case TOK_ASM_ldrexeq:
+ case TOK_ASM_ldrexbeq:
+ case TOK_ASM_strexeq:
+ case TOK_ASM_strexbeq:
+ asm_single_data_transfer_opcode(s1, token);
+ return;
+
+ case TOK_ASM_ldrheq:
+ case TOK_ASM_ldrsheq:
+ case TOK_ASM_ldrsbeq:
+ case TOK_ASM_strheq:
+ asm_misc_single_data_transfer_opcode(s1, token);
+ return;
+
+ case TOK_ASM_andeq:
+ case TOK_ASM_eoreq:
+ case TOK_ASM_subeq:
+ case TOK_ASM_rsbeq:
+ case TOK_ASM_addeq:
+ case TOK_ASM_adceq:
+ case TOK_ASM_sbceq:
+ case TOK_ASM_rsceq:
+ case TOK_ASM_tsteq:
+ case TOK_ASM_teqeq:
+ case TOK_ASM_cmpeq:
+ case TOK_ASM_cmneq:
+ case TOK_ASM_orreq:
+ case TOK_ASM_moveq:
+ case TOK_ASM_biceq:
+ case TOK_ASM_mvneq:
+ case TOK_ASM_andseq:
+ case TOK_ASM_eorseq:
+ case TOK_ASM_subseq:
+ case TOK_ASM_rsbseq:
+ case TOK_ASM_addseq:
+ case TOK_ASM_adcseq:
+ case TOK_ASM_sbcseq:
+ case TOK_ASM_rscseq:
+// case TOK_ASM_tstseq:
+// case TOK_ASM_teqseq:
+// case TOK_ASM_cmpseq:
+// case TOK_ASM_cmnseq:
+ case TOK_ASM_orrseq:
+ case TOK_ASM_movseq:
+ case TOK_ASM_bicseq:
+ case TOK_ASM_mvnseq:
+ asm_data_processing_opcode(s1, token);
+ return;
+
+ case TOK_ASM_lsleq:
+ case TOK_ASM_lslseq:
+ case TOK_ASM_lsreq:
+ case TOK_ASM_lsrseq:
+ case TOK_ASM_asreq:
+ case TOK_ASM_asrseq:
+ case TOK_ASM_roreq:
+ case TOK_ASM_rorseq:
+ case TOK_ASM_rrxseq:
+ case TOK_ASM_rrxeq:
+ asm_shift_opcode(s1, token);
+ return;
+
+ case TOK_ASM_muleq:
+ case TOK_ASM_mulseq:
+ case TOK_ASM_mlaeq:
+ case TOK_ASM_mlaseq:
+ asm_multiplication_opcode(s1, token);
+ return;
+
+ case TOK_ASM_smulleq:
+ case TOK_ASM_smullseq:
+ case TOK_ASM_umulleq:
+ case TOK_ASM_umullseq:
+ case TOK_ASM_smlaleq:
+ case TOK_ASM_smlalseq:
+ case TOK_ASM_umlaleq:
+ case TOK_ASM_umlalseq:
+ asm_long_multiplication_opcode(s1, token);
+ return;
+
+ case TOK_ASM_cdpeq:
+ case TOK_ASM_mcreq:
+ case TOK_ASM_mrceq:
+ asm_coprocessor_opcode(s1, token);
+ return;
+
+ case TOK_ASM_ldceq:
+ case TOK_ASM_ldcleq:
+ case TOK_ASM_stceq:
+ case TOK_ASM_stcleq:
+ asm_coprocessor_data_transfer_opcode(s1, token);
+ return;
+
+#if defined(TCC_ARM_VFP)
+ case TOK_ASM_vldreq:
+ case TOK_ASM_vstreq:
+ asm_floating_point_single_data_transfer_opcode(s1, token);
+ return;
+
+ case TOK_ASM_vmlaeq_f32:
+ case TOK_ASM_vmlseq_f32:
+ case TOK_ASM_vnmlseq_f32:
+ case TOK_ASM_vnmlaeq_f32:
+ case TOK_ASM_vmuleq_f32:
+ case TOK_ASM_vnmuleq_f32:
+ case TOK_ASM_vaddeq_f32:
+ case TOK_ASM_vsubeq_f32:
+ case TOK_ASM_vdiveq_f32:
+ case TOK_ASM_vnegeq_f32:
+ case TOK_ASM_vabseq_f32:
+ case TOK_ASM_vsqrteq_f32:
+ case TOK_ASM_vcmpeq_f32:
+ case TOK_ASM_vcmpeeq_f32:
+ case TOK_ASM_vmoveq_f32:
+ case TOK_ASM_vmlaeq_f64:
+ case TOK_ASM_vmlseq_f64:
+ case TOK_ASM_vnmlseq_f64:
+ case TOK_ASM_vnmlaeq_f64:
+ case TOK_ASM_vmuleq_f64:
+ case TOK_ASM_vnmuleq_f64:
+ case TOK_ASM_vaddeq_f64:
+ case TOK_ASM_vsubeq_f64:
+ case TOK_ASM_vdiveq_f64:
+ case TOK_ASM_vnegeq_f64:
+ case TOK_ASM_vabseq_f64:
+ case TOK_ASM_vsqrteq_f64:
+ case TOK_ASM_vcmpeq_f64:
+ case TOK_ASM_vcmpeeq_f64:
+ case TOK_ASM_vmoveq_f64:
+ asm_floating_point_data_processing_opcode(s1, token);
+ return;
+
+ case TOK_ASM_vcvtreq_s32_f32:
+ case TOK_ASM_vcvtreq_s32_f64:
+ case TOK_ASM_vcvteq_s32_f32:
+ case TOK_ASM_vcvteq_s32_f64:
+ case TOK_ASM_vcvtreq_u32_f32:
+ case TOK_ASM_vcvtreq_u32_f64:
+ case TOK_ASM_vcvteq_u32_f32:
+ case TOK_ASM_vcvteq_u32_f64:
+ case TOK_ASM_vcvteq_f64_s32:
+ case TOK_ASM_vcvteq_f32_s32:
+ case TOK_ASM_vcvteq_f64_u32:
+ case TOK_ASM_vcvteq_f32_u32:
+ case TOK_ASM_vcvteq_f64_f32:
+ case TOK_ASM_vcvteq_f32_f64:
+ asm_floating_point_vcvt_data_processing_opcode(s1, token);
+ return;
+
+ case TOK_ASM_vpusheq:
+ case TOK_ASM_vpopeq:
+ case TOK_ASM_vldmeq:
+ case TOK_ASM_vldmiaeq:
+ case TOK_ASM_vldmdbeq:
+ case TOK_ASM_vstmeq:
+ case TOK_ASM_vstmiaeq:
+ case TOK_ASM_vstmdbeq:
+ asm_floating_point_block_data_transfer_opcode(s1, token);
+ return;
+
+ case TOK_ASM_vmsreq:
+ case TOK_ASM_vmrseq:
+ asm_floating_point_status_register_opcode(s1, token);
+ return;
+#endif
+
+ default:
+ expect("known instruction");
+ }
+}
+
+ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier)
+{
+ int r, reg, size, val;
+ char buf[64];
+
+ r = sv->r;
+ if ((r & VT_VALMASK) == VT_CONST) {
+ if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n' &&
+ modifier != 'P')
+ cstr_ccat(add_str, '#');
+ if (r & VT_SYM) {
+ const char *name = get_tok_str(sv->sym->v, NULL);
+ if (sv->sym->v >= SYM_FIRST_ANOM) {
+ /* In case of anonymous symbols ("L.42", used
+ for static data labels) we can't find them
+ in the C symbol table when later looking up
+ this name. So enter them now into the asm label
+ list when we still know the symbol. */
+ get_asm_sym(tok_alloc(name, strlen(name))->tok, sv->sym);
+ }
+ if (tcc_state->leading_underscore)
+ cstr_ccat(add_str, '_');
+ cstr_cat(add_str, name, -1);
+ if ((uint32_t) sv->c.i == 0)
+ goto no_offset;
+ cstr_ccat(add_str, '+');
+ }
+ val = sv->c.i;
+ if (modifier == 'n')
+ val = -val;
+ snprintf(buf, sizeof(buf), "%d", (int) sv->c.i);
+ cstr_cat(add_str, buf, -1);
+ no_offset:;
+ } else if ((r & VT_VALMASK) == VT_LOCAL) {
+ snprintf(buf, sizeof(buf), "[fp,#%d]", (int) sv->c.i);
+ cstr_cat(add_str, buf, -1);
+ } else if (r & VT_LVAL) {
+ reg = r & VT_VALMASK;
+ if (reg >= VT_CONST)
+ tcc_internal_error("");
+ snprintf(buf, sizeof(buf), "[%s]",
+ get_tok_str(TOK_ASM_r0 + reg, NULL));
+ cstr_cat(add_str, buf, -1);
+ } else {
+ /* register case */
+ reg = r & VT_VALMASK;
+ if (reg >= VT_CONST)
+ tcc_internal_error("");
+
+ /* choose register operand size */
+ if ((sv->type.t & VT_BTYPE) == VT_BYTE ||
+ (sv->type.t & VT_BTYPE) == VT_BOOL)
+ size = 1;
+ else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
+ size = 2;
+ else
+ size = 4;
+
+ if (modifier == 'b') {
+ size = 1;
+ } else if (modifier == 'w') {
+ size = 2;
+ } else if (modifier == 'k') {
+ size = 4;
+ }
+
+ switch (size) {
+ default:
+ reg = TOK_ASM_r0 + reg;
+ break;
+ }
+ snprintf(buf, sizeof(buf), "%s", get_tok_str(reg, NULL));
+ cstr_cat(add_str, buf, -1);
+ }
+}
+
+/* generate prolog and epilog code for asm statement */
+ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
+ int nb_outputs, int is_output,
+ uint8_t *clobber_regs,
+ int out_reg)
+{
+ uint8_t regs_allocated[NB_ASM_REGS];
+ ASMOperand *op;
+ int i, reg;
+ uint32_t saved_regset = 0;
+
+ // TODO: Check non-E ABI.
+ // Note: Technically, r13 (sp) is also callee-saved--but that does not matter yet
+ static const uint8_t reg_saved[] = { 4, 5, 6, 7, 8, 9 /* Note: sometimes special reg "sb" */ , 10, 11 };
+
+ /* mark all used registers */
+ memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
+ for(i = 0; i < nb_operands;i++) {
+ op = &operands[i];
+ if (op->reg >= 0)
+ regs_allocated[op->reg] = 1;
+ }
+ for(i = 0; i < sizeof(reg_saved)/sizeof(reg_saved[0]); i++) {
+ reg = reg_saved[i];
+ if (regs_allocated[reg])
+ saved_regset |= 1 << reg;
+ }
+
+ if (!is_output) { // prolog
+ /* generate reg save code */
+ if (saved_regset)
+ gen_le32(0xe92d0000 | saved_regset); // push {...}
+
+ /* generate load code */
+ for(i = 0; i < nb_operands; i++) {
+ op = &operands[i];
+ if (op->reg >= 0) {
+ if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
+ op->is_memory) {
+ /* memory reference case (for both input and
+ output cases) */
+ SValue sv;
+ sv = *op->vt;
+ sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL | VT_LVAL;
+ sv.type.t = VT_PTR;
+ load(op->reg, &sv);
+ } else if (i >= nb_outputs || op->is_rw) { // not write-only
+ /* load value in register */
+ load(op->reg, op->vt);
+ if (op->is_llong)
+ tcc_error("long long not implemented");
+ }
+ }
+ }
+ } else { // epilog
+ /* generate save code */
+ for(i = 0 ; i < nb_outputs; i++) {
+ op = &operands[i];
+ if (op->reg >= 0) {
+ if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
+ if (!op->is_memory) {
+ SValue sv;
+ sv = *op->vt;
+ sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
+ sv.type.t = VT_PTR;
+ load(out_reg, &sv);
+
+ sv = *op->vt;
+ sv.r = (sv.r & ~VT_VALMASK) | out_reg;
+ store(op->reg, &sv);
+ }
+ } else {
+ store(op->reg, op->vt);
+ if (op->is_llong)
+ tcc_error("long long not implemented");
+ }
+ }
+ }
+
+ /* generate reg restore code */
+ if (saved_regset)
+ gen_le32(0xe8bd0000 | saved_regset); // pop {...}
+ }
+}
+
+/* return the constraint priority (we allocate first the lowest
+ numbered constraints) */
+static inline int constraint_priority(const char *str)
+{
+ int priority, c, pr;
+
+ /* we take the lowest priority */
+ priority = 0;
+ for(;;) {
+ c = *str;
+ if (c == '\0')
+ break;
+ str++;
+ switch(c) {
+ case 'l': // in ARM mode, that's an alias for 'r' [ARM].
+ case 'r': // register [general]
+ case 'p': // valid memory address for load,store [general]
+ pr = 3;
+ break;
+ case 'M': // integer constant for shifts [ARM]
+ case 'I': // integer valid for data processing instruction immediate
+ case 'J': // integer in range -4095...4095
+
+ case 'i': // immediate integer operand, including symbolic constants [general]
+ case 'm': // memory operand [general]
+ case 'g': // general-purpose-register, memory, immediate integer [general]
+ pr = 4;
+ break;
+ default:
+ tcc_error("unknown constraint '%c'", c);
+ pr = 0;
+ }
+ if (pr > priority)
+ priority = pr;
+ }
+ return priority;
+}
+
+static const char *skip_constraint_modifiers(const char *p)
+{
+ /* Constraint modifier:
+ = Operand is written to by this instruction
+ + Operand is both read and written to by this instruction
+ % Instruction is commutative for this operand and the following operand.
+
+ Per-alternative constraint modifier:
+ & Operand is clobbered before the instruction is done using the input operands
+ */
+ while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
+ p++;
+ return p;
+}
+
+#define REG_OUT_MASK 0x01
+#define REG_IN_MASK 0x02
+
+#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
+
+ST_FUNC void asm_compute_constraints(ASMOperand *operands,
+ int nb_operands, int nb_outputs,
+ const uint8_t *clobber_regs,
+ int *pout_reg)
+{
+ /* overall format: modifier, then ,-seperated list of alternatives; all operands for a single instruction must have the same number of alternatives */
+ /* TODO: Simple constraints
+ whitespace ignored
+ o memory operand that is offsetable
+ V memory but not offsetable
+ < memory operand with autodecrement addressing is allowed. Restrictions apply.
+ > memory operand with autoincrement addressing is allowed. Restrictions apply.
+ n immediate integer operand with a known numeric value
+ E immediate floating operand (const_double) is allowed, but only if target=host
+ F immediate floating operand (const_double or const_vector) is allowed
+ s immediate integer operand whose value is not an explicit integer
+ X any operand whatsoever
+ 0...9 (postfix); (can also be more than 1 digit number); an operand that matches the specified operand number is allowed
+ */
+
+ /* TODO: ARM constraints:
+ k the stack pointer register
+ G the floating-point constant 0.0
+ Q memory reference where the exact address is in a single register ("m" is preferable for asm statements)
+ R an item in the constant pool
+ S symbol in the text segment of the current file
+[ Uv memory reference suitable for VFP load/store insns (reg+constant offset)]
+[ Uy memory reference suitable for iWMMXt load/store instructions]
+ Uq memory reference suitable for the ARMv4 ldrsb instruction
+ */
+ ASMOperand *op;
+ int sorted_op[MAX_ASM_OPERANDS];
+ int i, j, k, p1, p2, tmp, reg, c, reg_mask;
+ const char *str;
+ uint8_t regs_allocated[NB_ASM_REGS];
+
+ /* init fields */
+ for (i = 0; i < nb_operands; i++) {
+ op = &operands[i];
+ op->input_index = -1;
+ op->ref_index = -1;
+ op->reg = -1;
+ op->is_memory = 0;
+ op->is_rw = 0;
+ }
+ /* compute constraint priority and evaluate references to output
+ constraints if input constraints */
+ for (i = 0; i < nb_operands; i++) {
+ op = &operands[i];
+ str = op->constraint;
+ str = skip_constraint_modifiers(str);
+ if (isnum(*str) || *str == '[') {
+ /* this is a reference to another constraint */
+ k = find_constraint(operands, nb_operands, str, NULL);
+ if ((unsigned) k >= i || i < nb_outputs)
+ tcc_error("invalid reference in constraint %d ('%s')",
+ i, str);
+ op->ref_index = k;
+ if (operands[k].input_index >= 0)
+ tcc_error("cannot reference twice the same operand");
+ operands[k].input_index = i;
+ op->priority = 5;
+ } else if ((op->vt->r & VT_VALMASK) == VT_LOCAL
+ && op->vt->sym
+ && (reg = op->vt->sym->r & VT_VALMASK) < VT_CONST) {
+ op->priority = 1;
+ op->reg = reg;
+ } else {
+ op->priority = constraint_priority(str);
+ }
+ }
+
+ /* sort operands according to their priority */
+ for (i = 0; i < nb_operands; i++)
+ sorted_op[i] = i;
+ for (i = 0; i < nb_operands - 1; i++) {
+ for (j = i + 1; j < nb_operands; j++) {
+ p1 = operands[sorted_op[i]].priority;
+ p2 = operands[sorted_op[j]].priority;
+ if (p2 < p1) {
+ tmp = sorted_op[i];
+ sorted_op[i] = sorted_op[j];
+ sorted_op[j] = tmp;
+ }
+ }
+ }
+
+ for (i = 0; i < NB_ASM_REGS; i++) {
+ if (clobber_regs[i])
+ regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
+ else
+ regs_allocated[i] = 0;
+ }
+ /* sp cannot be used */
+ regs_allocated[13] = REG_IN_MASK | REG_OUT_MASK;
+ /* fp cannot be used yet */
+ regs_allocated[11] = REG_IN_MASK | REG_OUT_MASK;
+
+ /* allocate registers and generate corresponding asm moves */
+ for (i = 0; i < nb_operands; i++) {
+ j = sorted_op[i];
+ op = &operands[j];
+ str = op->constraint;
+ /* no need to allocate references */
+ if (op->ref_index >= 0)
+ continue;
+ /* select if register is used for output, input or both */
+ if (op->input_index >= 0) {
+ reg_mask = REG_IN_MASK | REG_OUT_MASK;
+ } else if (j < nb_outputs) {
+ reg_mask = REG_OUT_MASK;
+ } else {
+ reg_mask = REG_IN_MASK;
+ }
+ if (op->reg >= 0) {
+ if (is_reg_allocated(op->reg))
+ tcc_error
+ ("asm regvar requests register that's taken already");
+ reg = op->reg;
+ goto reg_found;
+ }
+ try_next:
+ c = *str++;
+ switch (c) {
+ case '=': // Operand is written-to
+ goto try_next;
+ case '+': // Operand is both READ and written-to
+ op->is_rw = 1;
+ /* FALL THRU */
+ case '&': // Operand is clobbered before the instruction is done using the input operands
+ if (j >= nb_outputs)
+ tcc_error("'%c' modifier can only be applied to outputs",
+ c);
+ reg_mask = REG_IN_MASK | REG_OUT_MASK;
+ goto try_next;
+ case 'l': // In non-thumb mode, alias for 'r'--otherwise r0-r7 [ARM]
+ case 'r': // general-purpose register
+ case 'p': // loadable/storable address
+ /* any general register */
+ for (reg = 0; reg <= 8; reg++) {
+ if (!is_reg_allocated(reg))
+ goto reg_found;
+ }
+ goto try_next;
+ reg_found:
+ /* now we can reload in the register */
+ op->is_llong = 0;
+ op->reg = reg;
+ regs_allocated[reg] |= reg_mask;
+ break;
+ case 'I': // integer that is valid as an data processing instruction immediate (0...255, rotated by a multiple of two)
+ case 'J': // integer in the range -4095 to 4095 [ARM]
+ case 'K': // integer that satisfies constraint I when inverted (one's complement)
+ case 'L': // integer that satisfies constraint I when inverted (two's complement)
+ case 'i': // immediate integer operand, including symbolic constants
+ if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
+ goto try_next;
+ break;
+ case 'M': // integer in the range 0 to 32
+ if (!
+ ((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) ==
+ VT_CONST))
+ goto try_next;
+ break;
+ case 'm': // memory operand
+ case 'g':
+ /* nothing special to do because the operand is already in
+ memory, except if the pointer itself is stored in a
+ memory variable (VT_LLOCAL case) */
+ /* XXX: fix constant case */
+ /* if it is a reference to a memory zone, it must lie
+ in a register, so we reserve the register in the
+ input registers and a load will be generated
+ later */
+ if (j < nb_outputs || c == 'm') {
+ if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
+ /* any general register */
+ for (reg = 0; reg <= 8; reg++) {
+ if (!(regs_allocated[reg] & REG_IN_MASK))
+ goto reg_found1;
+ }
+ goto try_next;
+ reg_found1:
+ /* now we can reload in the register */
+ regs_allocated[reg] |= REG_IN_MASK;
+ op->reg = reg;
+ op->is_memory = 1;
+ }
+ }
+ break;
+ default:
+ tcc_error("asm constraint %d ('%s') could not be satisfied",
+ j, op->constraint);
+ break;
+ }
+ /* if a reference is present for that operand, we assign it too */
+ if (op->input_index >= 0) {
+ operands[op->input_index].reg = op->reg;
+ operands[op->input_index].is_llong = op->is_llong;
+ }
+ }
+
+ /* compute out_reg. It is used to store outputs registers to memory
+ locations references by pointers (VT_LLOCAL case) */
+ *pout_reg = -1;
+ for (i = 0; i < nb_operands; i++) {
+ op = &operands[i];
+ if (op->reg >= 0 &&
+ (op->vt->r & VT_VALMASK) == VT_LLOCAL && !op->is_memory) {
+ for (reg = 0; reg <= 8; reg++) {
+ if (!(regs_allocated[reg] & REG_OUT_MASK))
+ goto reg_found2;
+ }
+ tcc_error("could not find free output register for reloading");
+ reg_found2:
+ *pout_reg = reg;
+ break;
+ }
+ }
+
+ /* print sorted constraints */
+#ifdef ASM_DEBUG
+ for (i = 0; i < nb_operands; i++) {
+ j = sorted_op[i];
+ op = &operands[j];
+ printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
+ j,
+ op->id ? get_tok_str(op->id, NULL) : "",
+ op->constraint, op->vt->r, op->reg);
+ }
+ if (*pout_reg >= 0)
+ printf("out_reg=%d\n", *pout_reg);
+#endif
+}
+
+ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
+{
+ int reg;
+ TokenSym *ts;
+
+ if (!strcmp(str, "memory") ||
+ !strcmp(str, "cc") ||
+ !strcmp(str, "flags"))
+ return;
+ ts = tok_alloc(str, strlen(str));
+ reg = asm_parse_regvar(ts->tok);
+ if (reg == -1) {
+ tcc_error("invalid clobber register '%s'", str);
+ }
+ clobber_regs[reg] = 1;
+}
+
+/* If T refers to a register then return the register number and type.
+ Otherwise return -1. */
+ST_FUNC int asm_parse_regvar (int t)
+{
+ if (t >= TOK_ASM_r0 && t <= TOK_ASM_pc) { /* register name */
+ switch (t) {
+ case TOK_ASM_fp:
+ return TOK_ASM_r11 - TOK_ASM_r0;
+ case TOK_ASM_ip:
+ return TOK_ASM_r12 - TOK_ASM_r0;
+ case TOK_ASM_sp:
+ return TOK_ASM_r13 - TOK_ASM_r0;
+ case TOK_ASM_lr:
+ return TOK_ASM_r14 - TOK_ASM_r0;
+ case TOK_ASM_pc:
+ return TOK_ASM_r15 - TOK_ASM_r0;
+ default:
+ return t - TOK_ASM_r0;
+ }
+ } else
+ return -1;
+}
+
+/*************************************************************/
+#endif /* ndef TARGET_DEFS_ONLY */